Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ekg" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Characteristic points detection in ECG signal using Bayesian learning and fuzzy system
Autorzy:
Momot, M.
Momot, A.
Powiązania:
https://bibliotekanauki.pl/articles/333840.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
systemy rozmyte
ECG signal
fuzzy systems
bayesian learning
Opis:
Characteristic points detection such as beginnings and ends of P-wave, T-wave or QRS complex is one of primary aims in automated analysis of ECG signal. The paper presents one possible approach based on Bayesian inference to design of kernel based classifier. The classification function is constructed using the probability distribution function of standard normal distribution and independent Gaussian random variables. The parameters of such variables are computed using iterative Expectation-Maximization algorithm. This approach is used to calculate parameters of classification function to modelling Takagi-Sugeno-Kang fuzzy systems. Numerical experiment of characteristic points detection in ECG signal using CTS database is also presented.
Źródło:
Journal of Medical Informatics & Technologies; 2007, 11; 171-176
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Empirical Bayesian averaging method and its application to noise reduction in ECG signal
Autorzy:
Momot, A.
Momot, M.
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333575.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
średnia ważona
wnioskowanie bayesowskie
ECG signal
weighted averaging
Bayesian inference
Opis:
An electrocardiogram (ECG) is the prime tool in non-invasive cardiac electrophysiology and has a prime function in the screening and diagnosis of cardiovascular diseases. However one of the greatest problems is that usually recording an electrical activity of the heart is performed in the presence of noise. The paper presents empirical Bayesian approach to problem of signal averaging which is commonly used to extract a useful signal distorted by a noise. The averaging is especially useful for biomedical signal such as ECG signal, where the spectra of the signal and noise significantly overlap. In reality the variability of noise can be observed, with power from cycle to cycle, which is motivation for weighted averaging methods usage. It is demonstrated that by exploiting a probabilistic Bayesian learning framework, it can be derived accurate prediction models offering significant additional advantage, namely automatic estimation of 'nuisance' parameters. Performance of the new method is experimentally compared to the traditional averaging by using arithmetic mean and weighted averaging method based on criterion function minimization.
Źródło:
Journal of Medical Informatics & Technologies; 2006, 10; 93-101
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Fuzzy Relevance Vector Machine and its application to noise reduction in ECG signal
Autorzy:
Momot, A.
Momot, M.
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333828.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
systemy rozmyte
wnioskowanie bayesowskie
sygnał EKG
fuzzy systems
Bayesian inference
ECG signal
Opis:
The paper presents new method called the Fuzzy Relevance Vector Machine (FRVM), a modification of the relevance vector machine, introduced by M. Tipping, applied to learning Takagi-Sugeno-Kang (TSK) fuzzy system. Moreover it describes application of the FRVM to noise reduction in ECG signal. The results of the process are compared to those obtained using both Least Squares method for learning output functions in TSK rules and commonly used method using a low-pass moving average filter.
Źródło:
Journal of Medical Informatics & Technologies; 2005, 9; 99-105
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted averaging of ECG signals based on partition of input set in time domain
Autorzy:
Momot, A.
Momot, M.
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333836.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
ważone uśrednianie
redukcja hałasu
ECG signal
weighted averaging
noise reduction
Opis:
The paper presents new approach to problem of signal averaging which is commonly used to extract a useful signal distorted by a noise. The averaging is especially useful for biomedical signal such as ECG signal, where the spectra of the signal and noise significantly overlap. In reality can be observed variability of noise power from cycle to cycle which is motivation for using methods of weighted averaging. Performance of the new method, based on partition of input set in time domain and criterion function minimization, is experimentally compared with the traditional averaging by using arithmetic mean, weighted averaging method based on empirical Bayesian approach and weighted averaging method based on criterion function minimization.
Źródło:
Journal of Medical Informatics & Technologies; 2007, 11; 165-170
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Digital signal processing in ECG recorder with python-based software
Autorzy:
Kosiński, W.
Owczarek, A.
Jarocki, B.
Momot, M.
Płaczek, M.
Zegartowski, G.
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/333978.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
elektrokardiografia
urządzenie rejestrujące EKG
detekcja QRS
cyfrowe przetwarzanie sygnału
język programowania Python
electrocardiography
ECG recorder
QRS detection
digital signal processing
Python language
Linux
open source
Opis:
The aim of the paper is to present the possibilities and the advantages of using open source solution like Python and Linux in medical application development. An implementation of the QRS detection and classification is described as an example of integration of C++ and DSP toolkit in a Python application.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 6; IT61-68
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies