Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "microstructure modelling" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Aluminium foam testing for impact energy absorption aims
Autorzy:
Niezgoda, T.
Miedzińska, D.
Powiązania:
https://bibliotekanauki.pl/articles/245628.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
aluminium foam
microstructure modelling
open cell foam
closed cell foam
Opis:
Aluminium foams are a new group of materials used for impact energy absorbing elements. They are light (typically 10-25% of the density of the metal they are made of) and stiff, and are frequently proposed as a light weight structural material. That is why they often are applied in automotive and transport industry solutions, for example as parts of bumpers. The methods of numerical modelling for open and closed cell aluminium foams are presented in the paper as well as closed and open cellfoam microstructure model. The numerical models of foam ideal microstructures created with shell finite elements are shown. The models were developed on the basis of Kefain tetrakaidecahedrons - structures consisting of six squares and eight hexagons. In the case of closed cell foams, the polyhedron with full walls was adopted. In the case of open cell foams the circle wholes were removed from polyhedron surfaces. Then the numerical analysis of a created models compressive test was carried out with the usage of LS Dyna computer code. The nonlinear procedures were applied. The results were analyzed in the scope of energy absorbing properties of aluminium foams.
Źródło:
Journal of KONES; 2009, 16, 3; 283-289
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical modelling of the foamed materials structures with the usage of the 2D and beam elements
Autorzy:
Miedzińska, D.
Szymczyk, W.
Powiązania:
https://bibliotekanauki.pl/articles/245977.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
foamed aluminium
microstructure
FE modelling
Kelvin structure
Opis:
The possible options as materials for protective layers are aluminium foams which become also very popular due to their lightweight and excellent plastic energy absorbing properties. Such characteristics have been appreciated by the automotive industry with continued research to further understandfoam properties. Compressed foaming materials exhibit extensive plastic response, while the initial elastic region is limited in tension by a tensile brittle-failure stress. Aluminium foams have become an attractive material as blast protective layers due to their desirable compressive properties. With different material engineering techniques (as, for example double-layer foam cladding) they can be customized to achieve the most desirable properties. Energy absorption capacity of foams under blast load was analytically confirmed based on a rigid-perfectly plastic-locking foam model. Initial research indicates that energy absorbed by the cladding is much larger than that under quasi-static conditions due to shock wave effect. The methods of numerical modellingfor open and closed cell aluminium foams arepresented in the paper. The numerical models of foam ideal microstructures created with shell and together shell and beam finite elements are shown. The models were developed on the basis of Kelvin tetrakaidecahedrons - structures consisting of six sąuares and eight hexagons. In the case of open cell foams the circle wholes were removed from polyhedron surfaces. Then the numerical analysis o f a created models compressive test was carried out with the usage of MSC.Marc computer code. The nonlinear procedur es were applied. The results were analyzed in the scope of the assessing the behaviour of the open cell aluminium foam unit cell under the compressive load.
Źródło:
Journal of KONES; 2010, 17, 1; 267-272
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies