Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "air circulation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zmiany pokrywy lodów morskich Arktyki na przełomie XX i XXI wieku i ich związek z cyrkulacją atmosferyczną
Changes in the sea ice cover in the Arctic at the turn of the 20th and 21st centuries and their correlation with the atmospheric circulation
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260733.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka
cyrkulacja atmosferyczna
dipol arktyczny
lody morskie
dryf lodów
temperatura powietrza
Arctic
atmospheric circulation
Arctic Dipole
sea ice
drifting ice
air temperature
Opis:
W pracy dokonano analizy wpływu cyrkulacji atmosferycznej na obserwowane w ostatnich latach XX i pierwszych latach XXI wieku zmiany powierzchni lodów morskich w Arktyce oraz zmian temperatury powietrza w sektorze wschodniosyberyjskim i pacyficznym Arktyki. Wprowadzono nowy wskaźnik charakteryzu-jący cyrkulację atmosferyczną w basenie Morza Arktycznego – zmodyfikowany dipol arktyczny (zDA), będący miesięczną różnicą ciśnienia między rejonem Morza Beauforta a rejonem Tajmyru. Występowanie dodatnich faz zDA porządkuje i przyspiesza dryf lodów z mórz Wschodniosyberyjskiego, Czukockiego i zachodniej części Morza Beauforta oraz centralnych części Morza Arktycznego w kierunku Cieśniny Frama. Po roku 1999 gwałtownie wzrosła częstość występowania ekstremalnie dodatnich faz zDA, wydłużył się również czas ich występowania. W latach 1979-2007 zmiany charakteru cyrkulacji atmosferycznej opisanej przez zDA objaśniają ~42% zmienności rocz-nej powierzchni lodów w Arktyce i 46% zmienności powierzchni zlodzonej we wrześniu, czyli miesiącu, w którym zaznacza się minimum rozwoju lodów morskich. We wschodnich sektorach Arktyki działanie zDA pociąga za sobą wzrost częstości i intensywności adwekcji z południa, co powoduje również wzrost temperatury powietrza. Oszacowano, że gwałtowny wzrost wartości zDA, jaki nastąpił w roku 2007 wymusił, wraz ze zmniejszeniem się powierzchni lodów morskich, wzrost temperatury powietrza na stacjach wybrzeża Morza Czukockiego o ~1.3°C, na Morzu Beauforta o ~1.5°C. Taki stan wskazuje, że obecnie obserwowany gwałtowny spadek powierzchni lodów morskich w Arktyce nie stanowi rezultatu działania efektu cieplarnianego, lecz wzrost temperatury powietrza i spadek powierzchni lodów stanowi rezultat zachodzących zmian w cyrkulacji atmosferycznej nad Arktyką.
The observed, at the turn of the 20th and 21st centuries, rapid decrease both in sea ice extent and its area in the Arctic raise a question regarding the real spectrum of reasons influencing this process. A number of works indicate that the increase in the air temperature in the Arctic resulting from the greenhouse effect, is not responsible for the decrease in sea ice cover but the reduction of the ice cover is one of the main causes of the increase in temperature. The aim of this article is to analyse the influence of atmospheric circulation on the process of reduction of the sea ice cover area in the Arctic in the same period. The break of the so far observed correlations between the AO and air temperature (see Overland and Wang 2005, Graversen 2006, Maslanik et al. 2007) indicates that the reason for the decrease in sea ice area should be searched in the activity of other circulation patterns than AO. Starting with the Wu, Wang and Walsh notion of the Arctic Dipole and carrying out simulation of the directions and rate of the drifting ice, a conclusion can be drawn that a simple index being a modification of the ‘Arctic Dipole’ formulated by Wu et al. 2006 (notation zDA) can be used to describe the maximum effectiveness of the transport of ice from the Arctic and the ‘cleaning’ of the Pacific Arctic from ice (the East Siberian, Chukcha and Beaufort seas). This index can be calculated as a standardised difference between SLP between the Beaufort Sea centre and the Tajmyr centre (see Fig. 4). The presence of strong positive phases of zDA (see Fig. 5) is followed by a rapid increase in the export of ice from the Arctic and results in the decrease in the amount of many-year ice in the structure of the Arctic sea ice cover. The ice is then moved away from the coast of east Siberia and Alaska and equally fast moves along the great circle, along the Transarctic Current reaching the Fram Strait at the end. The presence of strong negative phase of zDA (see Fig. 5B) and the neutral phase (see Fig. 5C) creates favourable conditions for the increase in many-year ice in the sea ice cover and restricts the export of ice from the Arctic. In the period between 1949-2007 a gradual increase in time with the extreme positive phases of zDA (zDA . 1 .n) is observed, and the especially strong increase in the frequency of occurrence of extremely positive phases of zDA is noted in the years of the 21st century (see Fig. 6 and 7). The coefficient of correlation between sea ice extent in the Arctic in August and the number of months in a year with anomalously positive phases of zDA is equal –0.62 (p < 0.001, n = 27; 1979-2007). The same correlation with the annual ice area in the Arctic equals (–0.50, p < 0.008). The analysis of correlation of monthly differences in pressure (non-standardized) between the centre of the Beaufort Sea and the centre of the Tajmyr (notation DP) and the ice area in the Arctic indicates that statistically significant correlations occur if the periods they are averaged for, are longer (see Table 1). The condition is that the averaged period DP started earlier than the averaged sea ice area. The analysis of regression shows that in order to obtain a good model describing minimal (September) or mean annual sea ice extent in the Arctic the DP values from March, when the sea ice extent is the largest, should be taken into consideration as one of the independent variables. This gives explanation of the situation that for longer reduction of sea ice area during the summer season, atmospheric circulation favourable for ice export must appear with great advance (equations [1] and [2]). Changes in DP in the years 1979-2007 explain 42% of variances of mean annual sea ice area and 46% of minimal variances (September) in ice area in the Arctic. As the changes in sea ice area are controlled by the auto-regression process, the occurrence of the increased frequency of extremely positive zDA phases in the following years starting from 1988 (see Fig. 7), especially intensive in the years 2003, 2005 and 2007 resulted in the extreme record of minima of sea ice area, not noted before. The atmospheric circulation described with zDA index forces the flow of air from the south to the Beaufort, Chukcha, East Siberian and Laptev seas (see Fig. 5A and Fig. 14). This direction of advection should lead to the increase in surface air temperature (SAT) over the coasts of the above mentioned sea areas. Strong increases in annual SAT can be observed at the stations located on the coasts of the above mentioned seas. The monthly distribution of SAT values indicates especially strong increases in the months from the end of summer and autumn (see Fig. 10-12). The analysis of correlations between DP and monthly SAT at the stations located in that part of the Arctic (see Table 2) indicates the presence of generally weak correlations between the monthly values of DP and SAT. During winter season at the stations located in the western part of the analysed region (Laptev Sea: Kotielyj Island, Mys Shalaurov) the correlations are negative which means that with the increase in differences of pressure between the region of the Beauforf Sea and the region of the Tajmyr (increase zDA) SAT decreases there (in January these correlations are statistically significant). This state can be explained as resulting from advection of air cooled to a great extent over the Siberia. Positive correlations between SAT and DP can be observed at the remaining stations in December, January and February, i.e. in the period when the short wave radiation is scarce, almost null or null and the solid/fast ice reaches the coast line. There is no other explanation of this phenomenon then as the effect of advectional increase in temperature. Similar positive correlations between DP (and in this way also zDA) and the air temperature are observed over the entire analysed region in the summer months and at the beginning of autumn (July-September). At a number of stations in particular months these correlations are statistically not significant, reaching their maximum value at Vrangel Island (in August; r = +0.6; see Fig. 13). As the analysis indicates the summer and early autumn correlations are the direct effect of advection as well as indirect effect of zDA resulting in the area in the coastal waters free from ice. The increase in zDA is accompanied by the visible increase in SST in the summer and early autumn months, which consequently results in the increase in SAT in October. If the correlations between monthly temperature and DP are statistically significant then it is possible to carry out the analysis of regression. This analysis indicates that in the year 2007 in which zDA reached in the period from April to September extremely high values (see Fig.14), the increase in SAT which is influenced by atmospheric circulation, can be estimated as +0.9°C at Vrangel Island and +1.5°C in relation to mean many-year value at Barrow station. Thus, the influence of the atmospheric circulation defined by the zDA index in the Pacific sector of the Arctic indicates synergy – results both in the decrease in the sea ice area as well as in the increase in air temperature. Large restriction of sea ice area over summer season in these sea areas intensifies, in turn, the increase in SAT. The carried out analysis indicates that the observed changes in the area and age structure of the sea ice in the Arctic at the turn of the 20th and 21st centuries and during the first years of the 21st century are mainly connected with the activity of natural processes. The role of the greenhouse effect controlling the changes in sea ice cover of the Arctic, as the analysis shows, has been overestimated.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 7-33
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ cyrkulacji środkowotroposferycznej na temperaturę powietrza w północnej Kanadzie i na Alasce
The influence of the mid-tropospheric atmospheric circulation on the air temperature in Northern Canada and Alaska
Autorzy:
Marsz, A. A.
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260975.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Kanadyjska
Zatoka Baffina
cyrkulacja atmosferyczna
makrotypy Wangengejma-Girsa
Alaska
Canadian Arctic
Baffin Bay
air temperature
Wangengejm-Girs macro-types
atmospheric circulation
Opis:
Praca omawia wpływ zmian frekwencji „pacyficzno-amerykańskich” makrotypów cyrkulacji środkowotroposferycznej Wangengejma-Girsa na kształtowanie się temperatury powietrza na obszarze północnej Kanady i Alaski (> 60°N). Związki te analizowano w przekrojach miesięcznych i rocznych, w latach 1986-2010. Stwierdzono występowanie na ogół słabych związków, wykazujących dodatkowo wyraźne zróżnicowanie sezo-nowe i regionalne. Te na ogół słabe w przekrojach miesięcznych związki wynikają z niewielkiego zróżnicowania kierunków adwekcji stowarzyszonych z występowaniem poszczególnych makrotypów. Na obszarze leżącym na E od 125°W dla każdego z występujących makrotypów charakterystyczna jest dominacja napływów z północy. Związki temperatury rocznej z cyrkulacją środkowotroposferyczną różnicują się w zależności od rozmiarów zmian temperatury. W badanym okresie na obszarze położonym na W od 125°W temperatura roczna nie wykazuje statystycznie istotnego trendu (+0,022(š0,020)°Cźrok-1), a na E od tej długości występuje silny i istotny trend (+0,135(š0,025)°Cźrok-1). Na całym obszarze zmiany temperatury rocznej objaśnia zmienność frekwencji makro-typu Z w styczniu, przy czym na obszarze na W od 125°W objaśnienie to jest niewielkie (~31% zmienności), na E od 125°W zmienność frekwencji tego makrotypu objaśnia ~49% rocznej wariancji temperatury rocznej. W rów-naniu regresji wielokrotnej, której zmiennymi niezależnymi są frekwencje makrotypu Z w styczniu oraz makrotypu M1 w lipcu i wrześniu, zmienność frekwencji wymienionych makrotypów objaśnia 69% wariancji temperatury rocznej, jaka występuje na wschód od 125°W. Analiza wykazuje, że wzrost temperatury na całym obszarze jest związany z ujemnym trendem występującym we frekwencji makrotypu Z w styczniu i zastępowaniem go przez makrotyp M2, a na środkowej i wschodniej części obszaru dodatkowo z dodatnim trendem frekwencji makrotypu M1 w lipcu i wrześniu. Spadek frekwencji makrotypu Z w styczniu nie jest monotoniczny, gwałtowny spadek frekwencji tego makrotypu zaznaczył się w latach 1995-1996. Spadkowi frekwencji tego makrotypu odpowiada wzrost temperatury powietrza na wschód od 125°W o 2 deg. Najbardziej prawdopodobną przyczyną tej zmiany cyrkulacji środkowotroposfe-rycznej jest występujący w tym samym czasie spadek powierzchni lodów morskich na Zatoce Baffina. Ogólnie, zmiany temperatury rocznej na obszarze Alaski i północnej Kanady w latach 1986-2010 są niemal całkowicie objaśnione przez zachodzące w tym samym czasie zmiany cyrkulacji środkowotroposferycznej.
The paper discusses the influence of the frequency of "Pacific-American" Wangengejma-Girs macro-types of mid-tropospheric circulation on the air temperature in the area of northern Canada and Alaska (> 60°N). These correlations were analyzed monthly and annually, the period of analysis covered the years of 1986-2010. Generally weak correlations were found which also showed clear seasonal and regional variations. Generally weak links between the monthly frequency of macro-types and the air temperature result from a slight variation in directions of advection above the described area associated with the occurrence of the particular macro-types. In the area located to the E of 125°W the dominance of the inflows from the north is characteristic for each of the observed macro-types. Relationships of annual temperature with the mid-tropospheric circulation vary depending on the temperature changes in the analyzed area. In the area located W of 125° annual temperature during the examined period does not show a statistically significant trend (0.022 (š 0.020)°Cź year-1), E of this longitude there is a strong and significant trend (0.135 (š 0.025)°Cźyear-1). Changeability in the frequency of the macro-type Z in January explains the changes in the annual temperature in the entire area but in the area W of 125°W the explanation is small (~31% of the variation), in the area E of 125°W the changeability in the frequency of that macro-type explains ~49% of the annual variation of annual temperature. In the multiple regression equation where the frequencies of the macro-type Z in January and the macro-type M1 in July and September are the independent variables, the variability of frequency of the said macro-types explains 69% of the annual temperature variation which is observed east of 125°W. The analysis shows that the temperature rise in the whole area is associated with a negative trend in the frequency of the macro-type Z in January and its replacement by the macro-type M2, and in the central and eastern part of the area it is also associated with the positive trend in the frequency of the macro-type M1 in July and September. The decrease in the frequency of the macro-type Z in January is not monotonic, the sudden drop in the frequency of this macro-type was observed in 1995-1996. The decrease in the frequency of this macro-type is accompanied by the visible increase in the air temperature by 2 degrees E of 125° at the same time. The most likely cause of this change in the mid-tropospheric circulation is, the observed at the same time, decrease in sea ice in the Baffin Bay. Generally, the changes in the annual tempe-rature in the region of Alaska and Northern Canada in the years 1986-2010 are almost entirely explained by the changes in the mid-tropospheric circulation observed at the same time.
Źródło:
Problemy Klimatologii Polarnej; 2012, 22; 117-151
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies