Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sea temperature" wg kryterium: Wszystkie pola


Wyświetlanie 1-11 z 11
Tytuł:
Zmiany temperatury powierzchni Morza Czukockiego (1982-2008)
Changes of sea surface temperature at the Chukchi Sea (1982-2008)
Autorzy:
Zblewski, S.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/261049.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Morze Czukockie
temperatura powierzchni morza
cyrkulacja atmosferyczna
sea surface temperature
atmospheric circulation
Opis:
Praca charakteryzuje zmiany temperatury powierzchni Morza Czukockiego zachodzące w okresie 1982-2008 oraz wpływ na te zmiany cyrkulacji atmosferycznej. Stwierdzono występowanie dodatnich, istotnych statystycznie, miesięcznych i rocznych trendów temperatury powierzchni morza (TPM), nierównomiernie rozłożonych w przestrzeni. Obserwuje się występowanie asynchronicznych związków między cyrkulacją atmo-sferyczną a TPM, przy czym zmiany cyrkulacji atmosferycznej wyprzedzają w czasie zmiany TPM. W badanym okresie najsilniejszy wpływ na miesięczne i roczne zmiany TPM ma charakter cyrkulacji atmosferycznej występu-jącej w dłuższych okresach – wiosną, a nawet w całym okresie marzec-sierpień i marzec-wrzesień, poprzedzającym moment wystąpienia maksimum temperatury powierzchni morza. Wpływ cyrkulacji atmosferycznej na zmiany TPM nie jest bezpośredni, lecz realizuje się poprzez wpływ na dryf lodów na Morzu Czukockim w okresie wiosen-nym i letnim.
This work characterizes changes in sea surface temperature of the Chukchi Sea observed in the period 1982- 2008 and the way atmospheric circulation (mid-troposphere circulation, modified Arctic Dipole) influences these changes. The research made use of homogeneous data series of sea surface temperature (SST) originating from the data set NOAA NCDC ERSST v.2, in a 2�‹. x 2�‹�É grid (Fig. 1). In the examined period (1982-2008) the increase in sea surface temperature of the Chukchi Sea was observed (Table 1). In the central and southern part of the sea the increase in SST is much stronger (+0.067 deg/year) than in the northern part (0.002 deg/year). This phenomenon is connected with the fact that the northern part of the examined sea area was freed from ice only after the year 2002. During the observed period there was also mean annual increase in SST ranging from 0.62�‹C in the south-west part to 0.03�‹C in the northern part of the examined region (Fig. 2). In the period 1982-2008 strong, statistically significant correlations between SST and the character of the atmospheric circulation observed before were noted. The correlations of SST in the Chukchi Sea are stronger than those with the modified Artic Dipole. The changeability of value of the modified Arctic Dipole from March to September explains 36% (in the eastern part of the sea area) and up to 46% (in the western part) of annual changeability in SST. However the influence of changes in atmospheric circulation on the changeability of SST is not direct. The character of atmospheric circulation noted in spring season (III-V) and even during the entire spring and summer seasons (III-VIII) has influence on the ice drifting in the Chukchi Sea. The drifting ice has influence on the time during which the sea surface accumulates the heat and as a consequence affects the sea surface temperature. This sequence of consecutive correlations seems to be most important for the changes in the SST. The secondary role affecting the changes in SST in the Chukchi Sea plays the increased transport of warm water from the Bering Sea forced by strong positive phases of modified Arctic Dipole in September. This influence is limited to the area up to the southern part of the Chukchi Sea and to the time till the last three months (October-December).
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 147-158
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury powierzchni oceanu na Morzu Norweskim na temperaturę powietrza na Svalbardzie i Jan Mayen (1982-2002)
The influence of the changes in sea surface temperature of the Norwegian Sea on the air temperature at Svalbard and Jan Mayen (1982-2002)
Autorzy:
Kruszewski, G.
Marsz, A. A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260931.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
temperatury powierzchni oceanu
Morze Norweskie
air temperature
sea surface temperature
Norwegian Sea
Opis:
This work deals with correlations between SST in the Norwegian Sea and air temperature at selected stations located in the Atlantic sector of Arctic (Bjornoya, Hornsund, Svalbard-Lufthavn, Ny Alesund and Jan Mayen). The southern and central parts of the Norwegian Sea show the strongest correlation with the air temperature at the above mentioned stations, whereas the northern parts of this sea show weaker correlation. Apart from synchronic correlations (occurring in the same months) asynchronic correlations have been found. The latter are generally much stronger than the synchronic ones. The predominant influence on the changes in air temperature at the stations have the winter SST (JFMA) in the central part of the Norwegian Sea (grid 2° x 2°, 67°N, 010°E). These winter SST show quite strong correlations with monthly air temperature at Bjornoya, Hornsund, Svalbard-Lufthavn and Jan Mayen in July, August and September. At Ny Alesund station the period with statistically significant correlation between the air temperature and the winter SST is limited to September. The strongest correlation can be observed in August (see Table 4). The observed correlations result from modification in atmospheric circulation, caused by increased heat volume in the Norwegian Sea. Such modification is reflected in the increased frequency of occurrence of meridional atmospheric circulation, which is accompanied by the increase in the frequency of air advection from the S to this sector of Arctica. Some correlations which show more significant time shift have also been observed (see Table 5). Winter SST indicate positive correlations with air temperature observed at Bjornoya and Horn-sund in August and September the following year and at Svalbard-Lufthavn in September. At Ny Alesund station the coefficients of correlation with the air temperature in the following year are increased but they do not reach the statistically significant level. Another period with statistically significant correlations is November and December the following year; significant correlations with winter SST occur at Bjornoya (r = 0.71) and all stations located on Spitsbergen (r = 0.57). The correlations of SST with air temperature observed at Jan Mayen the following year are different, i.e. the presence of strong correlations is limited to summer season - July, August and September (r ~ 0.6). The correlations with winter SST occurring in November and December the following year is connected with warm masses carried to this region together with waters with the West Spitsbergen Current. Correlations between SST and air temperature present in summer and at the end of summer the following year may probably be influenced by the modification of atmospheric circulation. The only significant correlation with summer (July and August) SST indicates the temperature of February the following year at stations located on Spitsbergen and Jan Mayen. These correlations are negative (r ~ -0.55 - -0.50). The reason for occurrence of such correlations is not clear. The changeability of winter SST in the central part of the Norwegian Sea explains from 20% (Hornsund) to 32% (Bjornoya) of changeability in annual air temperature at the above mentioned stations in the same year and from 34% (Jan Mayen) to 41% (Hornsund) of changeability in annual air temperature in the following year. The increased level of explanation of changeability in air temperature the following year influenced by winter SST is connected with the delayed flowing of the Atlantic waters to high latitudes carried with the Norwegian Current and the West Spitsbergen Current.
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 59-78
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O związkach między zmianami temperatury powierzchni Morza Sargassowego a zmianami temperatury powietrza na półkuli północnej (1880-2007)
Correlations between changes in sea surface temperature of the Sargasso Sea and changes in air temperature of the Northern Hemisphere (1880-2007)
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/295028.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geomorfologów Polskich
Tematy:
globalne ocieplenie
AMO
Morze Sargassowe
półkula północna
global warming
Sargasso Sea
Northern Hemisphere
Opis:
W artykule przedstawiono występowanie bardzo silnych związków między zmiennością temperatury powierzchni Morza Sargassowego a zmianami globalnych i hemisferycznych anomalii temperatury powietrza. Zmiany temperatury powierzchni Morza Sargassowego najsilniej powiązane są ze zmiennością anomalii temperatury powietrza w Arktyce (64-94°N) i w szerokościach umiarkowanych (44-64°N) półkuli północnej. Przeprowadzone analizy szeregów, z których wyeliminowano trendy, wykazują, że zmienność temperatury powierzchni Morza Sargassowego steruje hemisferycznymi anomaliami temperatury powietrza, nie wykazuje natomiast związków ze zmianami koncentracji CO2 w troposferze. Zmienność temperatury powierzchni Morza Sargassowego odbija zmienność AMO (Atlantic Multidecadal Oscillation), która jest procesem naturalnym. Konkluzją jest stwierdzenie, że obserwowany obecnie wzrost hemisferycznej i globalnej temperatury powietrza stanowi w zasadniczym stopniu wynik działania procesów naturalnych.
This article presents occurrence of very strong correlations between the changeability in sea surface temperature of the Sargasso Sea and changes in global and hemispherical anomalies in air temperature. Changes in sea surface temperature of the Sargasso Sea are correlated in the strongest way with the changeability in air temperature anomalies in the Arctic (64-94°N) and latitudes (44-64°N) of the northern hemisphere. The analysis of series, where trends have been eliminated, indicates that changeability in sea surface temperature of the Sargasso Sea has influence on hemispherical anomalies in air temperature, yet it does not show any correlation with the concentration of CO2 in troposphere. Changes in sea surface temperature of the Sargasso Sea reflect AMO (Atlantic Multidecadal Oscillation) changeability, which is a natural process. A conclusion may be drawn that the currently observed increase in hemispherical and global air temperature is significantly influenced by natural processes.
Źródło:
Landform Analysis; 2011, 15; 17-38
1429-799X
Pojawia się w:
Landform Analysis
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury powierzchni morza przy zachodnich wybrzeżach Półwyspu Antarktycznego (1900-2012)
Changes in sea surface temperature at the West Coast of the Antarctic Peninsula (1900-2012)
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260880.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Półwysep Antarktyczny
zmiany SST
ochłodzenie
zmiany klimatu
Antarctic Peninsula
SST change
cool
climate change
Opis:
Praca przedstawia wyniki analizy zmian temperatury powierzchni morza (SST) na akwenie rozciągającym się na NW od północnej części Półwyspu Antarktycznego w latach 1900-2012. Stwierdzono występowanie trzech okresów zmian SST. Pierwszy okres – w latach 1900-1932 – charakteryzował się względnie stabilnym zachowaniem SST (trend zerowy, niewielka zmienność międzyroczna, niska (~0,3°C) średnia roczna SST. W drugim okresie – w latach 1932-2000 – nastąpił wzrost zmienności międzyrocznej SST i stopniowy, trójfazowy wzrost SST (trend +0,006(±0,001)°C•rok-1, sumaryczny wzrost rocznej SST o 0,7 deg do ~+1°C). Najwyższą wartość średnią obszarową SST osiągnęła w roku 2000. Trzeci okres – w latach 2000-2012 – charakteryzował się gwałtownym spadkiem SST (trend –0,048(±0,010)°C•rok-1, spadek SST o ~1 deg). Analiza trendów miesięcznych wykazuje, że zmiany SST stanowią rezultat adwekcji wód o odmiennych zasobach ciepła niesionych z zachodu przez Prąd Cirkumantarktyczny. Zmiany SST na badanym akwenie w ostatnim okresie nie są związane ze zmianami makroskalowej cyrkulacji atmosferycznej (SAM, Południowego Trybu Pierścieniowego, Oscylacji Antarktycznej). Opisane zmiany SST zachodzące w latach 2000-2012 mogą doprowadzić do zmiany trendu zmian temperatury powietrza na stacjach zachodniego wybrzeża Półwyspu Antarktycznego.
The paper presents the results of the analysis of changes in sea surface temperature (SST) of the sea area extending to NW from the northern part of the Antarctic Peninsula in the years 1900-2012. Three periods of SST changes were noted: – period covering years 1900-1932 with relatively stable behaviour of the SST (zero trend, a small inter-annual variability, low average annual SST – ~ 0.3°C), – period covering years 1932-2000 with an increase in inter-annual variability of SST and a gradual three-phase increase in SST (trend 0.006 (± 0.001)°C•yr-1, the total increase in annual SST of 0.7 degrees (up to ~ 1°C). The highest average value of the SST was noted in 2000. – period covering years 2000-2012 – a period of rapid drop in SST (trend –0.048 (± 0.010)°C•yr-1, SST decrease of ~ 1 degree). The analysis of monthly trends shows that the changes in SST are the result of advection of water resources with different heat carried from the west by the Antarctic Circumpolar Current. Changes in SST in the analyzed sea area in the last period are not connected with changes in macro-scale atmospheric circulation (SAM Southern Annular Mode, Antarctic Oscillation). The described changes in the SST occurring in 2000-2012 may lead to changes in the trend of temperature changes at the stations on the west coast of the Antarctic Peninsula.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 7-19
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola cyrkulacji atmosferycznej i zmian temperatury powierzchni morza w kształtowaniu zmienności temperatury powietrza na stacjach zachodniego wybrzeża Półwyspu Antarktycznego
Role of the atmospheric circulation and sea surface temperature changes in the formation of air temperature variability at the stations western coast of the Antarctic Peninsula
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260804.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Półwysep Antarktyczny
roczna temperatura powietrza
ochłodzenie
temperatura powierzchni morza
wiatr geostroficzny
Antarctic Peninsula
annual air temperature
cooling
sea surface temperature
geostrophic wind
Opis:
Praca omawia przyczyny spadku temperatury powietrza obserwowanego po roku 2000 na stacjach północnego krańca Półwyspu Antarktycznego oraz osłabienia tempa wzrostu temperatury na stacjach środkowej i południowej części Półwyspu. Analiza przyczyn zachodzących zmian temperatury powietrza wskazuje, że czynnikiem odpowiedzialnym za spadki temperatury jest silny spadek temperatury powierzchni morza (dalej SST – sea surface temperature) na wodach Oceanu Południowego rozpościerających się na NW od Półwyspu Antarktycznego. Zarówno zmiany SST, jak i zmienność południkowych, ujemnych (z sektora północnego) składowych wiatru geostroficznego, które objaśniają łącznie około 60% wariancji rocznej temperatury powietrza na stacjach omawianego obszaru, zachodzą pod wpływem czynników naturalnych.
The paper presents the results of research into the role of changes in SST and atmospheric circulation variability in the formation of annual air temperature at the station the South Shetland Islands and the western coast of the Antarctic Peninsula. Four stations have been chosen for the analysis: Bellingshausen, Esperanza, Faraday / Vernadsky and Rothera. In this region (Fig. 2) these stations have the longest and most complete series of temperature measurements. After an analysis, annual average values of SST anomalies of the sea area extending from the N and NW of the area in question (variable SSTA20; see Fig. 2) and the average annual values of zonal and meridional components of geostrophic wind at the level of 1000 hPa (four points marked in Fig. 2) have been chosen as factors influencing the temperature variations at these stations. Regression analysis showed that SST variability and variability of meridional components of geostrophic wind of the points 60°S, 60°W and 65°S, 70°W have a strong, statistically significant influence on the variability of annual air temperature at the analyzed stations . Variability of zonal components of geostrophic wind does not play a significant role in shaping the temperature variation. The variability of meridional component of geostrophic wind and SST anomalies explain a total of about 60% of the observed variance of annual air temperature at the studied stations throughout the observation period (Table 2). The cause of the collapse of the strong positive trend of temperature after 2000, which occurred at these stations, is the occurrence of a sharp fall in SST in the analyzed sea area (Fig. 5). As a result, the South Shetland Islands and northern edge of the Antarctic Peninsula after 2000 began to cool, and the positive trend at stations in central and southern part of the Antarctic Peninsula became much weaker (Fig. 1). The analysis shows that the variation of meridional components of geostrophic wind and SST variability controlling temperature changes at the stations of west coast of the Antarctic Peninsula are a sign of natural processes. They are directly (SST anomalies) or indirectly (meridional components of geostrophic wind) the result of oceanic processes. This observed variability in temperature in the north of the region and the western coast of the Antarctic Peninsula, including a strong positive trend observed in the years 1951-2000 and its subsequent collapse in the years 2000-2012, must be regarded as a manifestation of natural variability.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 21-42
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wód w Bramie Farero-Szetlandzkiej na temperaturę powietrza w Arktyce (1950-2005)
The influence of changes of the water temperature in the Faeroe-Shetland Channel on the air temperature in Arctic (1950-2005)
Autorzy:
Marsz, A. A.
Przybylak, R.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260775.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powierzchni oceanu
temperatura powietrza
Brama Farero-Szetlandzka
Prąd Norweski
Arktyka
sea surface temperature
air temperature
Faeroe-Shetland Channel
Norwegian Current
Arctic
Opis:
Praca analizuje związki między wskaźnikiem charakteryzującym zasoby ciepła w wodach atlantyckich wprowadzanych do Prądu Norweskiego, a dalej przez Prąd Zachodniospitsbergeński i Prąd Nordkapski do Arktyki, a roczną temperaturą powietrza w Arktyce. Analizę związków przeprowadzono dla Arktyki jako całości oraz jej sektorów: atlantyckiego, syberyjskiego, pacyficznego kanadyjskiego i sektora Morza Baffina. Wykazano istnienie silnie rozciągniętych w czasie (od 0 do 9 lat opóźnienia) związków z temperaturą powietrza w całej Arktyce, potwierdzających istotny statystycznie wpływ zmian zasobów ciepła w wodach na zmiany temperatury powietrza w Arktyce. Związki regionalne wykazują silne zróżnicowanie - na wzrost zasobów ciepła niemal natychmiastowo reaguje temperatura powietrza w Arktyce Atlantyckiej, z 2-6 letnim opóźnieniem temperatura powietrza w Arktyce Kanadyjskiej. Związki z temperaturą powietrza w sektorach syberyjskim i pacyficznym nie przekraczają progu istotności statystycznej. Zmiany temperatury powietrza w sektorze Morza Baffina wyprzedzają w czasie zmiany zasobów ciepła w wodach atlantyckich wprowadzanych następnie do Arktyki. To ostatnie może stanowić przyczynę okresowości w przebiegu temperatury powietrza w niektórych częściach Arktyki i strefy umiarkowanej.
Styszyńska (2005, 2007) has shown the existence of clear statistical relationships between heat contents in the waters of the Atlantic flowing towards the Arctic via the Norwegian, West Spitsbergen, and North Cape currents and the air temperature in Spitsbergen, Jan Mayen and Hopen between the years 1982 and 2002. These relationships extend in time: following rises in the heat content of the waters of the Norwegian Current, an increase in air temperature follows in the same year and the following year. Heat contents in the Atlantic waters flowing towards the Arctic are assessed according to the average sea surface temperature (SST) in the Faeroe-Shetland Channel (grid 62°N, 004°W) from January to April. These values are used to calculate a determining indicator such as FS1-42L, established as the average of two successive years: data from one year (k) and the year preceding it (k-1). The aim of this work is to investigate whether there are relationships between FS1-42L and the air temperature in both the whole of the Arctic and in individual Arctic sectors and, if so, what the character of these relationships is. The data analysed were a set of yearly air temperatures for the whole of the Arctic and for particular Arctic sectors (fig. 2) according to Przybylak (2007), as well as a set of monthly SST values including values calculated for the FS1-42L indicator (NOAA NCDC ERSST v.1; Smith and Reynolds, 2002). The primary methodology employed was Cross-Correlation Function Analysis. The FS1-42L was established as a first value, with the yearly air temperature used as a lagged value. The analysis was carried out for a 55-year period, from 1951 to 2005. The analysis showed that, taken as a whole, relationships between heat contents leading to the Arctic and air temperature over the whole of the Arctic (calculated from averages of individual sectors) were not particularly significant, though there was marked significance in these relationships from year 0 (fig. 3) to year +9 (fig. 4). The strongest relationships were those from the same year for which the FS1-42L was dated, after which relationships grew gradually weaker, until they finally disappeared in the tenth year. In the Atlantic sector of the Arctic the relationship was strong and almost immediate (fig 5). In the Siberian (fig. 6) and Pacific (fig. 7) sectors there was an absence of statistically significant relationships, and any that did exist were weak, with varying degrees of ?echo? in air temperature reactions. Air temperature in the Canadian sector (fig. 8) reacted to increases in heat contents with a delay of 2 to 6 years, with the strongest relations from FS1-42L being noted with a 5-year delay. The situation in Baffin Bay was entirely different, with air temperature changes preceding changes in the heat contents of the waters of the Faeroe-Shetland Channel by 1 to 6 years. The maximum strengths of these relations were -5 and -4 per year (fig. 9). Analysis of the reasons for these regional variations in the influence of FS1-42L on air temperature allows us to conclude that a major role is played by the bathymetry of the Arctic Ocean. Atlantic waters sinking beneath Arctic Surface Water (ASW) contribute to changes in the temperature of Arctic Intermediate Water (AIW). Independent of the routes taken by the processes, the influence of AIW on the air temperatures in the Siberian and Pacific sectors is limited, with these sectors being isolated by wide shelves from the Arctic Ocean. In the Canadian sector, which is separated by narrow shelves from deep-water parts of the Arctic Ocean and is situated a relatively short distance from the Atlantic sector, the influence of heat contents on the ASW is apparent, with a certain delay. Changes in the air temperature of the Baffin Bay sector are related to the variable activity of the Labrador Current, bringing cold waters to the North from the Gulf Stream delta. The force of strong cooling waters from the Labrador Current, with the appropriate delay, result in a lessening of the heat contents in the Faroe-Shetland Channel. Because of the fact that there is a strong positive correlation between the yearly air temperatures of the Canadian and Baffin Bay sectors, a chain of dependencies emerges: air temperature in the American sectors of the Arctic the flow of Atlantic waters FS1-42L air temperature in the Atlantic Arctic sector Ž air temperature in the Canadian sector should generate quasi-periodic (> 10 years) air temperature courses.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 45-59
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trendy temperatury powierzchni oceanu w sektorze pacyficznym Oceanu Południowego w ostatnim 25-leciu
Trends in the sea surface temperature in the Pacific sector of the Southern Ocean in the las 25 year period (1980-2004
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260641.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powierzchni oceanu
ochłodzenie powierzchni oceanu
Ocean Południowy
sektor pacyficzny
Antarktyka
sea surface temperature
sea surface cooling
climatic changes
Southern Ocean
Pacific sector
Antarctic
Opis:
Praca omawia zmiany temperatury powierzchni wody (TPO) sektora pacyficznego Oceanu Południowego w pasach szerokości 60 i 50°S, zachodzące w przekrojach miesięcznych i rocznych. Stwierdzono występowanie ujemnych trendów TPO w całym pasie 60°S, z czego ponad 1/3 współczynników trendu jest istotna i wysoce istotna statystycznie. Obszary silnego ochłodzenia powierzchni oceanu tworzą tam dwa ośrodki: pierwszy w rejonie 170°E - 140°W, drugi - 120-080°W. W obu ośrodkach najsilniejsze spadki TPO następują w miesiącach chłodnej pory roku (maj - sierpień), w drugim - dodatkowo - stosunkowo silne ochłodzenie zaznacza się w miesiącach ciepłej pory roku (styczeń - marzec). Na szerokości 50°S ochłodzenie jest znacznie słabsze - istotne statystycznie zmiany TPO zaznaczają się wyłącznie po wschodniej stronie sektora (100-080°W), gdzie również występują trendy ujemne. Kumulacja istotnych i nieistotnych statystycznie trendów miesięcznych prowadzi do zaznaczania się na obszarze około 54% powierzchni sektora pacyficznego Oceanu Południowego istotnych statystycznie, ujemnych trendów rocznej TPO. Na pozostałym obszarze badanego sektora bądź brak realnych zmian TPO, bądź występuje tendencja do słabego spadku temperatury. Przebiegi temperatury rocznej wskazują, że w ośrodku zachodnim (60°S, 170°E -140°W) TPO konsekwentnie obniża się od początku obserwacji (1980 rok), gdy we wschodniej części sektora pacy-ficznego (120-080°W) cały obserwowany w 25-leciu trend stanowi konsekwencję silnego spadku rocznej TPO w ciągu ostatnich 7 lat (1997-2004).
This work deals with monthly and annual changes in sea surface temperature (SST) of the Pacific sector of the South Ocean observed in 60°- 50°S latitudinal bands. The occurrence of negative trends of SST was noted in the entire 60° band and 1/3 of the trend coefficients is statistically significant and highly significant. The regions marked by strong cooling of ocean surface are formed by two centres - one 170° - 140°W and the other extending from 120° to 080°W. The greatest decrease in sea surface temperature in both centres takes place during cold season (May - August), in the other centre there is also additional quite strong cooling in the months of warm season (January - March). In the latitude 50°S the cooling is much weaker - statistically significant changes in SST are observed only in the eastern part of the Pacific region (100°- 080°W) where negative trends are also noted. Cumulating of statistically significant and non-significant monthly trends leads to statistically significant negative trends in annual SST observed in 54% of the area in the Pacific sector of the South Ocean. In the remaining area of the Pacific sector of the South Ocean there are either no visible changes in the sea surface temperature or there is tendency of weak decrease in temperature. The courses of annual SST indicate that in the western region (60S°, 170° -140°W) the SST has been decreasing constantly since the beginning of the observational period (since the year 1980), whereas in the eastern part of the Pacific sector (120°- 080°W) the whole trend observed over the 25-year period results from strong decrease in annual SST in the period of last 7 years (1997-2004).
Źródło:
Problemy Klimatologii Polarnej; 2005, 15; 17-26
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Autorzy:
Styszyńska, A.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260907.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zmiany powierzchni lodów
THC
temperatura powietrza
temperatura wody powierzchniowej
Morze Karskie
Arktyka
Atlantyk Północny
ice cover
changes in sea-ice extent
air temperature
sea surface temperature
Kara Sea
Arctic
North Atlantic
Opis:
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 109-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozmiary i przebieg współczesnego ocieplenia Arktyki w rejonie mórz Barentsa i Karskiego
Dimension and course of the present warming of the Arctic in the region of the Barents and Kara seas
Autorzy:
Marsz, A. A.
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260739.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
współczesne ocieplenie
temperatura powietrza
trendy temperatury powietrza
temperatura powierzchni morza
wody atlantyckie
delta Golfsztromu
Arktyka
Morze Barentsa
Morze Karskie
present warming
air temperature
sea surface temperature
Atlantic waters
Gulf Stream
Arctic
Barents Sea
Kara sea
Opis:
Celem pracy była analiza rozmiarów i przebiegu współczesnego (1980-2007) ocieplenia wschod-niej części Arktyki Atlantyckiej w rejonie mórz Barentsa i Karskiego. Stwierdzono, że w tym okresie ocieplenie posiadało charakter pulsacyjny, składało się z kolejnych, coraz silniejszych wzrostów temperatury powietrza, oddzielanych od siebie okresami ochłodzeń. Poszczególnym fazom ocieplenia odpowiadają wzrosty transportu ciepłych wód atlantyckich do Morza Barentsa i wzrosty temperatury powierzchni morza (SST). Najwyraźniejsze fazy ocieplenia wystąpiły w latach 1988-1990 i 2002-2007. Najsilniejsze wzrosty temperatury zaznaczyły się w za-chodniej i północno-zachodniej części obszaru, najsłabsze na południowych wybrzeżach mórz Barentsa i Karskiego. Wzrost rocznej temperatury powietrza między okresami 1980-1982 a 2005-2007 może być szacowany na około 5°C w północo-zachodniej części obszaru (N i NW część Morza Barentsa) do około 1.5°C na południowo-wschod-nich wybrzeżach Morza Barentsa i południowo-zachodnich wybrzeżach Morza Karskiego. Analiza trendów wyka-zała, że statystycznie istotne trendy roczne występują jedynie na północnych i zachodnich skrajach badanego obszaru. W trendach sezonowych największą liczbę statystycznie istotnych trendów na poszczególnych stacjach obserwuje się latem. Średnie obszarowe trendy są jednakowe jesienią, zimą i wiosną (+0.065°Cźrok-1), wyraźnie niższe latem (+0.044°Cźrok-1), istotne statystycznie od wiosny do jesieni, nieistotne zimą. Analiza trendów mie-sięcznych wykazuje, że obraz, jaki daje analiza trendów sezonowych wiosny (III-V), lata (VI-VIII), jesieni (IX-XI) i zimy (XII-II) nie daje rzeczywistego obrazu rozkładu zmian temperatury w czasie. Wartości trendów miesięcznych rozłożone są skrajnie nierównomiernie, w okresie od listopada do stycznia oraz w kwietniu średnie wartości tren-dów na omawianym obszarze są większe od 0.1°Cźrok-1, w pozostałych miesiącach zawierają się w granicach od +0.020 (luty) do +0.052°Cźrok-1 (sierpień). Główną przyczyną obserwowanych zmian temperatury powietrza w rejonie obu mórz jest wzrost zasobów ciepła w wodach atlantyckich transportowanych do Arktyki z tropików i subtropików przez cyrkulację oceaniczną. Wzrost zasobów ciepła w wodach kierowanych z delty Golfsztromu na północ prowadzi z 1-4 letnim opóźnieniem do wzrostu SST i spadku powierzchni lodów na Morzu Barentsa, w mniejszym stopniu na Morzu Karskim. Oba czynniki (zmiany SST i zmiany powierzchni lodów) regulują następnie temperaturę powietrza, głównie poprzez wpływ na rozmiary strumieni ciepła z powierzchni morza do atmosfery. Znaczny wpływ na modyfikowanie zmian temperatury powietrza w stosunku do zmian wymuszanych przez zmiany SST ma regionalna cyrkulacja atmosferyczna, natomiast hemisferyczna (Oscylacja Arktyczna) i makroregionalna (NAO) mody cyrkulacyjne wywierają w rozpatrywanym okresie znikomy wpływ na zmiany temperatury powietrza, zmiany SST i zmiany powierzchni lodów morskich na morzach Barentsa i Karskim.
The aim of this work is the analysis of the dimensions and the course of contemporary (1980-2007) warming of the east part of the Atlantic Arctic in the region of the Barents and Kara seas (fig. 1, tab. 1). It has been noted that the warming in that period had pulsating character, was made up of consecutive stronger and stronger increases in air temperature, separated from each other by cooling periods (fig. 4, 6-7). The increase in the transport of warm Atlantic waters into the Barents Sea and the increase in SST (sea surface temperature) of this sea correspond to the subsequent phases of warming. The most significant phases of warming were noted in the years 1988-1990 and 2002-2007 (fig. 4). The strongest increases in temperature were marked in the west and north- west part of this region and the weakest in the south coast of the Barents and Kara seas (fig. 6-7). The annual increase in air temperature between the periods 1980-1982 and 2005-2007 may be estimated as about 5°C in the north-west part of this region (N and NW part of the Barents Sea) and as 1.5°C in the south-east coast of the Barents Sea and south – west coast of the Kara Sea (fig. 8). The analysis of trends indicated that the statistically significant annual trends are only observed in the north and west parts of the examined region (fig. 9-10). The greatest number of statistically significant trends in seasonal trends at the observed stations was noted in summer (table 2). The mean regional trends are equal in autumn, winter and spring (+0.065°Cźyear-1), significantly lower in summer (+0.044°Cźyear-1), statistically significant from spring to autumn and not significant in winter. The analysis of monthly trends indicated that the picture obtained from the analysis of seasonal trends (spring – III-V, summer – VI-VIII, autumn – IX-XI, winter – XII-II) does not reflect the real picture of the distribution of changes in temperature in time. The values of monthly trends are distributed in an extremely uneven way, in the period from November to January and in April the mean values of trends in the examined region are larger than 0.1°C year-1 and in the remaining months can be found within the limits from +0.020 (February) to +0.052°C year-1 (August) - see table 3. The main reason for the observed changes in air temperature in the region of both seas can be attributed to the increase in heat resources in the Atlantic waters transported to the Arctic from the tropics and sub-tropics with the oceanic circulation. The increase in heat resources in the waters imported north from the Gulf Stream, leads to the increase, delayed by 1-4 year in SST and to the decrease in the sea ice cover of the Barents Sea and, to a lesser extent, of the Kara Sea (tab. 4-6, fig. 13 and 15). Both factors (changes in SST and changes in sea ice extent) further control the air temperature mainly via the influence on the size of flow from the sea surface to the atmosphere. Great influence on the modification of changes in air temperature in relation to changes forced by changes in SST has the regional atmospheric circulation, whereas the hemispherical (AO) and macro-regional (NAO) circulation modes have little influence on the changes in air temperature, on changes in SST and on changes in sea ice extent of the Barents and Kara seas.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 35-67
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Temperatura wód atlantyckich na głębokości 200 m w Prądzie Zachodniospitsbergeńskim (76.5°N, 9-12°E), a temperatura powierzchni morza w tym rejonie (1996-2011)
Temperature of the Atlantic Water at a Depth of 200 m in the West Spitsbergen Current (76.5°N, 9-12°E) and the Sea Surface Temperature in this Region (1996-2011)
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260985.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Atlantycka
Prąd Zachodniospitsbergeński
wody atlantyckie
SST
korelacje
Atlantic Arctic
West Spitsbergen Current
Atlantic Water
correlation
Opis:
Praca omawia rozkład w czasie i przestrzeni związków, jakie zachodzą między temperaturą Wód Atlantyckich w Prądzie Zachodniospitsbergeńskim i temperaturą powierzchni morza (SST) na wodach wokół-spitsbergeńskich. Wykorzystano pomiary temperatury Wód Atlantyckich prowadzone przez Instytut Oceanologii PAN na głębokości ~200 m na profilu 76,5°N, 9-12°E (oznaczenie TW200). Szereg TW200 jest krótki (1996-2011) i stanowi średnią z pomiarów wykonywanych w lipcu i sierpniu. Celem pracy jest określenie w jakiej mierze stosowane powszechnie zbiory danych SST charakteryzują na tych akwenach zasoby ciepła w głębszych warstwach wód. Stwierdzono, że zbiory te dobrze charakteryzują podpowierzchniowe zasoby ciepła Wód Atlantyckich w chłodnej porze roku – okresie zimowego wychładzania oceanu – od listopada do kwietnia-maja. Jest to związane z działaniem intensywnej konwekcji. W sezonie ciepłym (od czerwca do października) związki między TW200 i SST stają się słabe ze względu na tworzenie się w przypowierzchniowej warstwie oceanu warstwy wygrzanych wód, stabilnych hydrostatycznie. W wyniku tego kontakt wód powierzchniowych z wodami zalegającymi głębiej ustaje i zmiany SST kształtują się pod wpływem zmian bilansu cieplnego powierzchni oceanu, bez większego wpływu zasobów ciepła wód zalegających głębiej. W przekrojach miesięcznych najsilniejsze związki między TW200 i SST zachodzą w kwietniu tego samego roku (SST wyprzedza moment pomiaru TW200) i w grudniu tego samego roku (SST jest opóźnione względem TW200). W ujęciu sezonowym najsilniejsze związki TW200 zachodzą ze średnią SST z okresu styczeń-kwiecień (SST01-04). Z wartością TW200 z danego roku związki takie zachodzą dwukrotnie – w tym samym roku co pomiar TW200 i w roku następnym. Rozkład współczynników korelacji wartości TW200 z SST na obszarze północnej części Morza Norweskiego, zachodniej części Morza Barentsa i NE części Morza Grenlandzkiego wskazuje, że wartość TW200 stanowi jeden z najważniejszych wskaź-ników klimatycznych dla tej części Arktyki.
The work discusses the distribution in time and space of relationships taking place between the temperature of the Atlantic Water in the West Spitsbergen Current and sea surface temperature of waters in the vicinity of Spitsbergen. Temperature of the Atlantic water is measured by the Institute of Oceanology of Polish Academy of Sciences at a depth of ~200 m along the profile 76.5°N, 9-12°E and is the average of the measurements taken in July and August along the profile (marked TW200). The measurement series TW200 is short (1996-2011; 16 years). The aim of this study is to determine the extent to which the commonly used SST data sets describe the resources of warm water in the deeper layers of the sea area. It was found that the SST data sets very well characterized subsurface warm water resources of the Atlantic in the cold season of the year – the winter cooling of the ocean – from November to April-May. It is connected with the action of intensive convection. In the period of warm season (June to October) the relationship between TW200 and SST becomes weak due to the formation of a hydrostatically stable layer of warm water in the surface layer of the ocean. As a result the contact of surface waters with deeper layers of water ceases and changes in SST are influenced by changes in ocean surface heat balance, without much impact of heat resources from deeper ocean. The strongest monthly correlations between the TW200 and SST occur in April of the same year (SST precedes time of measurement TW200) and in December of the same year (SST is delayed relatively to TW200). The strongest seasonal correlations between TW200 and mean SST occur from the period of January-April (SSTJFMA). Such correlations between the value of TW200 and SST in a given year occur twice – in the same year when TW200 was measured and the following year. The distribution of coefficients of correlation between TW200 and SST in the northern part of the Norwegian Sea, the western part of the Barents Sea and NE part of the Greenland Sea indicates that the value of the TW200 is one of the most important climatic factors for this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2012, 22; 43-56
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany pokrywy lodów morskich Arktyki na przełomie XX i XXI wieku i ich związek z cyrkulacją atmosferyczną
Changes in the sea ice cover in the Arctic at the turn of the 20th and 21st centuries and their correlation with the atmospheric circulation
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260733.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka
cyrkulacja atmosferyczna
dipol arktyczny
lody morskie
dryf lodów
temperatura powietrza
Arctic
atmospheric circulation
Arctic Dipole
sea ice
drifting ice
air temperature
Opis:
W pracy dokonano analizy wpływu cyrkulacji atmosferycznej na obserwowane w ostatnich latach XX i pierwszych latach XXI wieku zmiany powierzchni lodów morskich w Arktyce oraz zmian temperatury powietrza w sektorze wschodniosyberyjskim i pacyficznym Arktyki. Wprowadzono nowy wskaźnik charakteryzu-jący cyrkulację atmosferyczną w basenie Morza Arktycznego – zmodyfikowany dipol arktyczny (zDA), będący miesięczną różnicą ciśnienia między rejonem Morza Beauforta a rejonem Tajmyru. Występowanie dodatnich faz zDA porządkuje i przyspiesza dryf lodów z mórz Wschodniosyberyjskiego, Czukockiego i zachodniej części Morza Beauforta oraz centralnych części Morza Arktycznego w kierunku Cieśniny Frama. Po roku 1999 gwałtownie wzrosła częstość występowania ekstremalnie dodatnich faz zDA, wydłużył się również czas ich występowania. W latach 1979-2007 zmiany charakteru cyrkulacji atmosferycznej opisanej przez zDA objaśniają ~42% zmienności rocz-nej powierzchni lodów w Arktyce i 46% zmienności powierzchni zlodzonej we wrześniu, czyli miesiącu, w którym zaznacza się minimum rozwoju lodów morskich. We wschodnich sektorach Arktyki działanie zDA pociąga za sobą wzrost częstości i intensywności adwekcji z południa, co powoduje również wzrost temperatury powietrza. Oszacowano, że gwałtowny wzrost wartości zDA, jaki nastąpił w roku 2007 wymusił, wraz ze zmniejszeniem się powierzchni lodów morskich, wzrost temperatury powietrza na stacjach wybrzeża Morza Czukockiego o ~1.3°C, na Morzu Beauforta o ~1.5°C. Taki stan wskazuje, że obecnie obserwowany gwałtowny spadek powierzchni lodów morskich w Arktyce nie stanowi rezultatu działania efektu cieplarnianego, lecz wzrost temperatury powietrza i spadek powierzchni lodów stanowi rezultat zachodzących zmian w cyrkulacji atmosferycznej nad Arktyką.
The observed, at the turn of the 20th and 21st centuries, rapid decrease both in sea ice extent and its area in the Arctic raise a question regarding the real spectrum of reasons influencing this process. A number of works indicate that the increase in the air temperature in the Arctic resulting from the greenhouse effect, is not responsible for the decrease in sea ice cover but the reduction of the ice cover is one of the main causes of the increase in temperature. The aim of this article is to analyse the influence of atmospheric circulation on the process of reduction of the sea ice cover area in the Arctic in the same period. The break of the so far observed correlations between the AO and air temperature (see Overland and Wang 2005, Graversen 2006, Maslanik et al. 2007) indicates that the reason for the decrease in sea ice area should be searched in the activity of other circulation patterns than AO. Starting with the Wu, Wang and Walsh notion of the Arctic Dipole and carrying out simulation of the directions and rate of the drifting ice, a conclusion can be drawn that a simple index being a modification of the ‘Arctic Dipole’ formulated by Wu et al. 2006 (notation zDA) can be used to describe the maximum effectiveness of the transport of ice from the Arctic and the ‘cleaning’ of the Pacific Arctic from ice (the East Siberian, Chukcha and Beaufort seas). This index can be calculated as a standardised difference between SLP between the Beaufort Sea centre and the Tajmyr centre (see Fig. 4). The presence of strong positive phases of zDA (see Fig. 5) is followed by a rapid increase in the export of ice from the Arctic and results in the decrease in the amount of many-year ice in the structure of the Arctic sea ice cover. The ice is then moved away from the coast of east Siberia and Alaska and equally fast moves along the great circle, along the Transarctic Current reaching the Fram Strait at the end. The presence of strong negative phase of zDA (see Fig. 5B) and the neutral phase (see Fig. 5C) creates favourable conditions for the increase in many-year ice in the sea ice cover and restricts the export of ice from the Arctic. In the period between 1949-2007 a gradual increase in time with the extreme positive phases of zDA (zDA . 1 .n) is observed, and the especially strong increase in the frequency of occurrence of extremely positive phases of zDA is noted in the years of the 21st century (see Fig. 6 and 7). The coefficient of correlation between sea ice extent in the Arctic in August and the number of months in a year with anomalously positive phases of zDA is equal –0.62 (p < 0.001, n = 27; 1979-2007). The same correlation with the annual ice area in the Arctic equals (–0.50, p < 0.008). The analysis of correlation of monthly differences in pressure (non-standardized) between the centre of the Beaufort Sea and the centre of the Tajmyr (notation DP) and the ice area in the Arctic indicates that statistically significant correlations occur if the periods they are averaged for, are longer (see Table 1). The condition is that the averaged period DP started earlier than the averaged sea ice area. The analysis of regression shows that in order to obtain a good model describing minimal (September) or mean annual sea ice extent in the Arctic the DP values from March, when the sea ice extent is the largest, should be taken into consideration as one of the independent variables. This gives explanation of the situation that for longer reduction of sea ice area during the summer season, atmospheric circulation favourable for ice export must appear with great advance (equations [1] and [2]). Changes in DP in the years 1979-2007 explain 42% of variances of mean annual sea ice area and 46% of minimal variances (September) in ice area in the Arctic. As the changes in sea ice area are controlled by the auto-regression process, the occurrence of the increased frequency of extremely positive zDA phases in the following years starting from 1988 (see Fig. 7), especially intensive in the years 2003, 2005 and 2007 resulted in the extreme record of minima of sea ice area, not noted before. The atmospheric circulation described with zDA index forces the flow of air from the south to the Beaufort, Chukcha, East Siberian and Laptev seas (see Fig. 5A and Fig. 14). This direction of advection should lead to the increase in surface air temperature (SAT) over the coasts of the above mentioned sea areas. Strong increases in annual SAT can be observed at the stations located on the coasts of the above mentioned seas. The monthly distribution of SAT values indicates especially strong increases in the months from the end of summer and autumn (see Fig. 10-12). The analysis of correlations between DP and monthly SAT at the stations located in that part of the Arctic (see Table 2) indicates the presence of generally weak correlations between the monthly values of DP and SAT. During winter season at the stations located in the western part of the analysed region (Laptev Sea: Kotielyj Island, Mys Shalaurov) the correlations are negative which means that with the increase in differences of pressure between the region of the Beauforf Sea and the region of the Tajmyr (increase zDA) SAT decreases there (in January these correlations are statistically significant). This state can be explained as resulting from advection of air cooled to a great extent over the Siberia. Positive correlations between SAT and DP can be observed at the remaining stations in December, January and February, i.e. in the period when the short wave radiation is scarce, almost null or null and the solid/fast ice reaches the coast line. There is no other explanation of this phenomenon then as the effect of advectional increase in temperature. Similar positive correlations between DP (and in this way also zDA) and the air temperature are observed over the entire analysed region in the summer months and at the beginning of autumn (July-September). At a number of stations in particular months these correlations are statistically not significant, reaching their maximum value at Vrangel Island (in August; r = +0.6; see Fig. 13). As the analysis indicates the summer and early autumn correlations are the direct effect of advection as well as indirect effect of zDA resulting in the area in the coastal waters free from ice. The increase in zDA is accompanied by the visible increase in SST in the summer and early autumn months, which consequently results in the increase in SAT in October. If the correlations between monthly temperature and DP are statistically significant then it is possible to carry out the analysis of regression. This analysis indicates that in the year 2007 in which zDA reached in the period from April to September extremely high values (see Fig.14), the increase in SAT which is influenced by atmospheric circulation, can be estimated as +0.9°C at Vrangel Island and +1.5°C in relation to mean many-year value at Barrow station. Thus, the influence of the atmospheric circulation defined by the zDA index in the Pacific sector of the Arctic indicates synergy – results both in the decrease in the sea ice area as well as in the increase in air temperature. Large restriction of sea ice area over summer season in these sea areas intensifies, in turn, the increase in SAT. The carried out analysis indicates that the observed changes in the area and age structure of the sea ice in the Arctic at the turn of the 20th and 21st centuries and during the first years of the 21st century are mainly connected with the activity of natural processes. The role of the greenhouse effect controlling the changes in sea ice cover of the Arctic, as the analysis shows, has been overestimated.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 7-33
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies