Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "piroliza" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Dekarbonizacja metanu – kierunki zagospodarowania węgla popirolitycznego
Decarbonisation of methane – directions of post-pyrolytic coal management
Autorzy:
Krasodomski, Wojciech
Wojtasik, Michał
Markowski, Jarosław
Żak, Grażyna
Powiązania:
https://bibliotekanauki.pl/articles/2143377.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
piroliza metanu
sadza
niebieski wodór
dekarbonizacja
methane pyrolysis
soot
blue hydrogen
decarbonisation
Opis:
Prezentowany przegląd literaturowy dotyczy możliwych kierunków zagospodarowania węgla będącego produktem ubocznym procesu pirolizy metanu (dekarbonizacji metanu). Piroliza metanu jest coraz częściej rozpatrywaną metodą będącą alternatywną technologią produkcji wodoru bez emisji CO2 – tak zwanego niebieskiego wodoru. Piroliza/dekarbonizacja stosowana jest do produkcji sadzy od lat trzydziestych XX wieku (np. znany proces firmy Hüls). Piroliza metanu jest procesem endotermicznym, który wymaga, w celu uzyskania wysokiej wydajności, zastosowania temperatur rzędu 1000°C i więcej, co powoduje, że jest to proces mocno energochłonny i kosztowny w porównaniu z aktualnie stosowanymi metodami produkcji wodoru, np. reformingiem parowym. Największą jednak zaletą metody pirolizy/dekarbonizacji metanu / gazu ziemnego jest brak konieczności wychwytywania i składowania CO2 (sekwestracji), co znacznie upraszcza proces i zbliża ekonomiczny koszt wytworzenia wodoru tą metodą do kosztu jego wytwarzania wcześniej wspomnianymi „klasycznymi” metodami. Co więcej, produkcja wodoru tą metodą charakteryzuje się nie tylko mniejszą emisją CO2, ale też pozwala na uzyskanie wodoru o wysokiej czystości, zbliżonego przydatnością do stosowanego w ogniwach paliwowych. Dużym ograniczeniem procesu oprócz wspomnianej wysokiej temperatury jest powstawanie produktu ubocznego w postaci węgla; jeśli w przyszłości wodór będzie pozyskiwany w tym procesie na skalę przemysłową, powstaną duże jego ilości, dlatego znalezienie nowych zastosowań węgla jest kluczowym czynnikiem dla rozwoju tej technologii jako wykonalnej metody produkcji wodoru. Możliwości wykorzystania węgla będą zależeć od jego natury i właściwości. Przeanalizowano dostępne artykuły naukowe i specjalistyczne pod kątem rodzajów powstającego węgla, ze szczególnym uwzględnieniem jego struktury. Podjęto próbę zebrania informacji dotyczących korelacji pomiędzy zastosowaną metodą dekarbonizacji metanu a strukturą powstającego węgla.
The presented literature review concerns possible directions of coal management, which is a by-product of the methane pyrolysis process (methane decarbonization). Methane pyrolysis is more and more often considered as an alternative technology for the production of hydrogen without CO2 emission – the so-called blue hydrogen. Pyrolysis/decarbonization has been used in the production of carbon black since the 1930s (e.g. the well-known Huels process). Methane pyrolysis is an endothermic process that requires, in order to obtain high efficiency, the use of temperatures of 1000°C and more, which makes it a highly energy-consuming and expensive process compared to the currently used methods of hydrogen production, e.g. steam reforming. However, the greatest advantage of the methane/natural gas pyrolysis/decarbonization method is the lack of the need to capture and store CO2 (sequestration), which significantly simplifies the process and brings the economic cost of hydrogen production by this method closer to the cost of its production to the previously mentioned “classic” methods. Moreover, the production of hydrogen by this method is not only characterized by lower CO2 emissions, but also allows to obtain hydrogen of high purity, similar to that suitable for use in fuel cells. A major limitation of the process, in addition to the aforementioned high process temperature, is the formation of a carbon by-product. If hydrogen is obtained from this process on an industrial scale in the future, large amounts of this by-product will be produced, therefore the development of new coal applications is a key factor in the development of this technology as a viable method of hydrogen production. The possibilities of using coal will depend on its nature and properties. The available scientific and specialist articles were analyzed in terms of the types of produced coal, with particular emphasis on its structure. An attempt was made to collect information on the correlation between the applied methane decarbonisation method and the structure of the generated coal.
Źródło:
Nafta-Gaz; 2022, 78, 1; 56-63
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Piroliza metanu - wpływ wybranych parametrów na przebieg procesu
Methane pyrolysis – influence of selected parameters on the course of the process
Autorzy:
Wojtasik, Michał
Burnus, Zygmunt
Markowski, Jarosław
Żak, Grażyna
Lubowicz, Jan
Powiązania:
https://bibliotekanauki.pl/articles/31343883.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
piroliza metanu
turkusowy wodór
dekarbonizacja metanu
methane pyrolysis
turquoise hydrogen
methane decarbonization
Opis:
Piroliza metanu jest metodą otrzymywania wodoru z metanu, która coraz częściej zyskuje zainteresowanie naukowców oraz inwestorów z sektora gospodarki. Technologia ta jest alternatywą dla reformingu parowego – obecnie najczęściej stosowanej metody produkcji wodoru. Pomimo wielu zalet reforming parowy jest procesem, w trakcie którego powstają znaczne ilości ditlenku węgla. Dlatego trwają poszukiwania nowej, wydajnej metody produkcji wodoru. Oprócz elektrolizy wody, pirolizy biomasy wydaje się, że to właśnie piroliza metanu jest najbardziej obiecującą technologią. Metoda ta ma wiele zalet, jest prosta, szybka, uzyskany wodór cechuje się wysoką czystością, jednak największą jej zaletą jest brak ubocznej produkcji ditlenku węgla, co korzystnie wpływa na ocenę zrównoważenia tego procesu. Rozkład metanu przeprowadza się w reaktorach rurowych w temperaturze 600–1200°C, w zależności od rodzaju procesu. W procesie pirolizy obok wodoru powstają proporcjonalne ilości czystego węgla o różnorodnej morfologii oraz różnym poziomie grafityzacji. W pracy przedstawiono charakterystykę stanowiska do pirolizy metanu zbudowanego w 2022 r. w Zakładzie Zrównoważonych Technologii Chemicznych INiG – PIB. Stanowisko pozwala na prowadzenie prób pirolizy metanu w temperaturze do 1100°C. Maksymalna teoretyczna wydajność tej instalacji to 400 ml H2/minutę. Przeprowadzono wstępne próby działania pieca rurowego, wyposażonego w rurowy reaktor kwarcowy o pojemności 6,8 dm3 . Opisano próby termicznego rozkładu metanu w zakresie temperatur 600–1050°C. Za pomocą metod chromatograficznych zbadano zawartość metanu, wodoru, azotu, tlenu oraz sumy węglowodorów C2 i C3 w gazach poprocesowych. Wytypowano zmienne mogące mieć wpływ na rezultaty pirolizy. Sprawdzono wpływ temperatury, czasu reakcji, strumienia surowca oraz składu mieszanki gazów procesowych w wybranych zakresach. Potwierdzono zależności pomiędzy temperaturą i szybkością przepływu substratu a wydajnością procesu.
Methane pyrolysis is a method of obtaining hydrogen from methane, which is increasingly gaining the interest of scientists and investors. This technology is an alternative to steam reforming – currently the most used method of hydrogen production. Despite its many advantages, steam reforming is a process that generates significant amounts of carbon dioxide. Therefore, the search for a new, efficient method of hydrogen production is underway. Apart from water electrolysis and biomass pyrolysis, methane pyrolysis is the most promising technology. It is method with many advantages; it is simple, fast and the hydrogen obtained by it is characterized by high purity, but its greatest advantage is the lack of carbon dioxide emission, which positively affects the assessment of the sustainability of this process. Methane decomposition is carried out in reactors at a temperature of 600–1200°C, depending on the process type. In the pyrolysis process, in addition to hydrogen, proportional amounts of clean carbon, with various morphologies and levels of graphitisation, are produced. The paper presents the characteristics of the methane pyrolysis installation, built in 2022 at the Department of Sustainable Chemical Technologies INiG – PIB. The installation allows for methane pyrolysis tests at temperatures up to 1100°C. The maximum theoretical capacity is 400 ml H2/minute. A furnace equipped with a tubular quartz reactor with a capacity of 6.8 dm3 was used. Methane decomposition, in the temperature range up to 1050°C, has been described. Using chromatographic methods, the content of methane, hydrogen, nitrogen, oxygen and the C2 + C3 hydrocarbons in post-process gases was examined. Variables that may affect the pyrolysis results were selected. The influence of temperature, reaction time, raw material flow rate and the composition of the process gas mixture in selected ranges was checked. The dependencies between the temperature and flow rate of the substrate and the efficiency of the process were confirmed.
Źródło:
Nafta-Gaz; 2023, 79, 7; 484-489
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Piroliza metanu na tle wybranych metod otrzymywania wodoru
Methane pyrolysis against the background of selected hydrogen production methods
Autorzy:
Markowski, Jarosław
Wojtasik, Michał
Powiązania:
https://bibliotekanauki.pl/articles/31343893.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
piroliza metanu
reforming parowy
czysty wodór
methane pyrolysis
steam reforming
pure hydrogen
Opis:
Piroliza metanu jest alternatywną do reformingu parowego metodą przetwarzania metanu (gazu ziemnego) do wodoru. Największą różnicą między tymi technologiami jest brak emisji ditlenku węgla w przypadku pirolizy metanu, co biorąc pod uwagę konieczność sekwestracji tego groźnego gazu cieplarnianego w technologii reformingu parowego, powoduje, że piroliza metanu staje się metodą wysoce konkurencyjną, a zainteresowanie nią wśród koncernów paliwowych, firm chemicznych i petrochemicznych stale wzrasta. W niniejszym artykule przedstawiono porównanie wybranych istotnych, perspektywicznych metod otrzymywania wodoru z metodą pirolizy metanu (gazu ziemnego). W porównaniu uwzględniono takie metody jak: reforming parowy, elektroliza wody, piroliza biomasy, fotofermentacja czy gazyfikacja węgla kamiennego. Na podstawie wybranych dostępnych źródeł literaturowych przeanalizowano koszty wytworzenia wodoru poszczególnymi metodami, obejmujące nie tylko cenę surowców, koszt energii, zużycie wody, ale również opłaty za emisję gazów cieplarnianych, koszt dodatkowych surowców i procesów. Pokrótce nakreślono też zalety i wady wybranych metod otrzymywania wodoru. Przeprowadzono analizę ekonologiczną wytypowanych technologii wytwarzania wodoru. Przedstawione wyniki analiz ekonomicznych i ekonologicznych wykazały wysoką przewagę konkurencyjną pirolizy metanu (gazu ziemnego) między innymi nad reformingiem parowym oraz nad elektrolizą wody. Potwierdzeniem korzystnej oceny procesu termicznego rozkładu metanu (gazu ziemnego) jest rosnące zainteresowanie tą technologią wśród dużych zagranicznych koncernów. W artykule zaprezentowano przegląd postępów wybranych istotnych projektów inwestycyjnych, mających na celu budowę przemysłowych instalacji dekompozycji metanu (gazu ziemnego). Opisano rodzaj zastosowanej metody pirolizy przez każdą z firm prowadzących inwestycję w tym zakresie. Obecnie, według wiedzy autorów, żadna z instalacji nie produkuje wodoru metodą pirolizy metanu w skali przemysłowej, największych postępów dokonały firmy BASF, Hypro, Hazar i Gazprom.
Methane pyrolysis is an alternative to steam reforming method of converting methane (natural gas) to hydrogen. The biggest difference between these technologies is the lack of carbon dioxide emissions in the case of methane pyrolysis, which, taking into account the need to sequester this dangerous greenhouse gas in steam reforming technology, makes methane pyrolysis a highly competitive method, and interest in it among fuel concerns, chemical and petrochemical industries is constantly increasing. This article presents a comparison of selected, prospective and important methods of hydrogen production using the method of methane (natural gas) pyrolysis. Methods such as steam reforming, water electrolysis, biomass pyrolysis, photofermentation and hard coal gasification were used for comparison. On the basis of selected available literature sources, the hydrogen production costs by methods were analyzed, including not only the raw materials price, the cost of energy, water consumption, but also fees for greenhouse gas emissions and the cost of additional raw materials and processes. The advantages and disadvantages of selected methods of hydrogen production are also briefly outlined. Econologic analysis of selected hydrogen production technologies is presented. The presented results of economic and econologic analyses showed a high competitive advantage of methane pyrolysis, among others, over steam reforming and water electrolysis. The positive assessment of the process of thermal decomposition of methane (natural gas) is confirmed by the growing interest in this technology among large concerns. The article presents an overview of the progress of selected significant investment projects aimed at the construction of industrial methane decomposition installations. The type of pyrolysis method used by each of the companies carrying out the investment in this area was described. Currently, according to the authors' knowledge, none of the installations produces hydrogen by pyrolysis of methane on an industrial scale, the most advanced progress is made by BASF, Hypro, Hazar and Gazprom.
Źródło:
Nafta-Gaz; 2023, 79, 6; 428-435
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie chromatografii gazowej i cieczowej w badaniach produktów ciekłych pirolizy mikrofalowej
Implementation of gas and liquid chromatography in the study of liquid products of microwave-assisted pyrolysis
Autorzy:
Burnus, Zygmunt
Markowski, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/2143379.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
chromatografia gazowa
chromatografia cieczowa
spektrometria mas
biomasa
piroliza mikrofalowa
gas chromatography
liquid chromatography
mass spectrometry
biomass
microwave pyrolysis
Opis:
W niniejszej pracy zbadano możliwości wykorzystania technik chromatografii gazowej GC-FID oraz GC-MS wspomaganych klasyczną chromatografią cieczową LC do badania składników biooleju pochodzącego z pirolizy biomasy stałej. Badania biomasy i produktów jej przerobu mają na celu rozwój technologii paliw proekologicznych i/lub zawierających frakcje otrzymywane z biomasy lub surowców odpadowych. Celem tych działań jest stopniowe zwiększanie wykorzystania źródeł energii pochodzących z surowców odnawialnych przy jednoczesnym ograniczaniu zastosowania surowców kopalnych. Jest to jedno z działań, których efektem ma być ograniczenie emisji GHG. Działanie to jest związane z wytycznymi dyrektyw Unii Europejskiej nakazujących wzrost udziału odnawialnych źródeł energii w transporcie oraz energetyce. Są to dyrektywy 2003/30/WE oraz 2009/28/WE, dotyczące promowania użycia biopaliw lub innych paliw odnawialnych w transporcie oraz wzrostu udziału pozyskiwania energii ze źródeł odnawialnych w różnych sektorach krajów Wspólnoty Europejskiej. Energetyczne wykorzystanie biomasy to jeden z głównych obszarów zainteresowania polityki energetycznej Polski, zbieżnej z celami polityki wyznaczonymi przez Unię Europejską. W niniejszym artykule dokonano przeglądu literatury w zakresie rodzajów biomasy występującej w Polsce oraz zastosowania technik chromatografii gazowej i cieczowej (Py-GC, GC-MS, GC-FID) w badaniu ciekłych produktów procesu pirolizy biomasy. Opracowano warunki chromatograficzne badania produktów ciekłych pirolizy biomasy stałej przy wykorzystaniu reaktora mikrofalowego do pirolizy jako elementu aparatury umożliwiającego badania technikami chromatograficznymi. Przy zastosowaniu dobranych warunków analitycznych wykonano badania ciekłych produktów pirolizy biomasy: miskantu olbrzymiego, słomy, trocin sosnowych, łusek słonecznika i ziaren kawy. Zidentyfikowano składniki biooleju pochodzącego z pirolizy biomasy i zaproponowano metodę oznaczania ilościowego składników biooleju. Wykazano możliwość jednoczesnego zastosowania różnych technik chromatografii gazowej w celu poznania składu chemicznego biooleju pochodzącego z pirolizy mikrofalowej różnego rodzaju biomasy stałej.
In this work, the possibilities of implementation of the GC-FID and GC-MS gas chromatography techniques supported by classic LC liquid chromatography to study the components of bio-oil derived from the pyrolysis of solid biomass were examined. Research on biomass and its processing products is aimed at the development of pro-ecological fuels and / or fuels containing fractions obtained from biomass or waste materials. The aim of these activities is to gradually increase the use of energy sources derived from renewable raw materials and limiting the use of fossil raw materials. It is one of the ways to reduce GHG emissions. This action is related to the guidelines of the European Union Directives describing an increase in the share of renewable energy sources in transport and energy – Directives 2003/30/EC and 2009/28/EC – the promotion of the use of biofuels or other renewable fuels in transport and the increase in the share of energy obtained from renewable sources in various sectors of the European Community. The use of energy obtained from biomass is one of the main areas of interest in Poland's energy policy, consistent with the policy objectives set by the European Union. This article describes the types of biomass found in Poland and the use of gas and liquid chromatography techniques (Py-GC, GC-MS, GC-FID) in the study of liquid products of the biomass pyrolysis process. The chromatographic conditions for testing liquid products of solid biomass pyrolysis with the use of a microwave pyrolysis reactor as an element of the apparatus enabling the research with chromatographic techniques were developed. Using selected analytical conditions, tests were carried out on liquid products of biomass pyrolysis: giant miscanthus, straw, pine sawdust, sunflower husks and coffee grounds. The components of bio-oil derived from biomass pyrolysis were identified and a method for the quantification of bio-oil components was proposed. The possibility of the simultaneous application of various gas chromatography techniques to understand the chemical composition of bio-oil from microwave pyrolysis of various types of solid biomass was demonstrated.
Źródło:
Nafta-Gaz; 2022, 78, 1; 64-79
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies