Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "additive coloring" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Generalized Sum List Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/31343297.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum list coloring
sum choice number
generalized sum list coloring
additive hereditary graph property
Opis:
A (graph) property \( \mathcal{P} \) is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties \( \mathcal{P} \). If to each vertex $v$ of a graph $G$ a list $L(v)$ of colors is assigned, then in an \( (L, \mathcal{P} ) \)-coloring of $G$ every vertex obtains a color from its list and the subgraphs of $G$ induced by vertices of the same color are always in \( \mathcal{P} \). The \( \mathcal{P} \)-sum choice number \( X_{sc}^\mathcal{P} (G) \) of $G$ is the minimum of the sum of all list sizes such that, for any assignment $L$ of lists of colors with the given sizes, there is always an \( (L, \mathcal{P} ) \)-coloring of $G$. We state some basic results on monotonicity, give upper bounds on the \( \mathcal{P} \)-sum choice number of arbitrary graphs for several properties, and determine the \( \mathcal{P} \)-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 689-703
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies