Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "difference scheme" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Implicit scheme of the finite difference method for the second-order dual phase lag equation
Autorzy:
Majchrzak, E.
Mochnacki, B.
Powiązania:
https://bibliotekanauki.pl/articles/280549.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
microscale heat transfer
dual phase lag model
implicit scheme of finite difference method
Opis:
The second-order dual phase lag equation (DPLE) as a mathematical model of the microscale heat transfer is considered. It is known that the starting point determining the final form of this equation is the generalized Fourier law in which two positive constants (the relaxation and thermalization times) appear. Depending on the order of the generalized Fourier law expansion into the Taylor series, different forms of the DPLE can be obtained. As an example of the problem described by the second-order DPLE equation, thermal processes proceeding in the domain of a thin metal film subjected to a laser pulse are considered. The numerical algorithm is based on an implicit scheme of the finite difference method. At the stage of numerical modeling, the first, second and mixed order of the dual phase lag equation are considered. In the final part of the paper, examples of different solutions are presented and conclusions are formulated.
Źródło:
Journal of Theoretical and Applied Mechanics; 2018, 56, 2; 393-402
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method
Autorzy:
Majchrzak, E.
Mochnacki, B.
Powiązania:
https://bibliotekanauki.pl/articles/122742.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
heat conduction
dual-phase lag equation
finite difference method
stability conditions of FDM explicit scheme
przewodzenie ciepła
metoda różnic skończonych
Opis:
The dual-phase lag equation (DPLE) is considered. This equation belongs to the group of hyperbolic PDE, contains a second order time derivative and higher order mixed derivative in both time and space. From the engineer’s point of view, the DPLE results from the generalized form of the Fourier law. It is applied as a mathematical model of thermal processes proceeding in the micro-scale and also in the case of bio-heat transfer problem analysis. At the stage of numerical computations the different approximate methods of the PDE solving can be used. In this paper, the authors present the considerations concerning the stability conditions of the explicit scheme of finite difference method (FDM). The appropriate conditions have been found using the von Neumann analysis. In the final part of the paper, the results of testing computations are shown.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 3; 89-96
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit scheme of the finite difference method for 1D dual-phase lag equation
Autorzy:
Majchrzak, E.
Mochnacki, B.
Powiązania:
https://bibliotekanauki.pl/articles/973620.pdf
Data publikacji:
2017
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
micro-scale heat conduction
dual-phase lag equation
finite difference method
stability of FDM implicit scheme
równanie z dwoma czasami opóźnień
metoda różnic skończonych
DPLE
schemat FDM
Opis:
The 1D dual-phase lag equation (DPLE) is solved using the implicit FDM scheme. The dual phase lag equation is the hyperbolic PDE and contains a second order time derivative and higher order mixed derivative in both time and space. The DPLE results from the generalization of the well known Fourier law in which the delay times are taken into account. So, in the equation discussed, two positive parameters appear. They correspond to the relaxation time τq and the thermalization time τ T. The DPLE finds, among others, the application as the mathematical description of the thermal processes proceeding in the micro-scale. In the paper, the numerical solution of DPLE based on the implicit scheme of the FDM is presented. The authors show that a such an approach in the case of DPLE leads to the unconditionally stable differential scheme.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2017, 16, 3; 37-46
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies