Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rainbow connection" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Generalized Rainbow Connection of Graphs and their Complements
Autorzy:
Li, Xueliang
Magnant, Colton
Wei, Meiqin
Zhu, Xiaoyu
Powiązania:
https://bibliotekanauki.pl/articles/31342420.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
ℓ-rainbow path
( k, ℓ)-rainbow connected
( k, ℓ)-rainbow connection number
Opis:
Let $G$ be an edge-colored connected graph. A path $P$ in $G$ is called $ \mathcal{l} $-rainbow if each subpath of length at most $ \mathcal{l} + 1 $ is rainbow. The graph $G$ is called $(k, \mathcal{l} )$-rainbow connected if there is an edge-coloring such that every pair of distinct vertices of $G$ is connected by $k$ pairwise internally vertex-disjoint $ \mathcal{l} $-rainbow paths in $G$. The minimum number of colors needed to make $G$ $(k, \mathcal{l})$-rainbow connected is called the $ (k, \mathcal{l} )$-rainbow connection number of $G$ and denoted by $ rc_{ k,\mathcal{l} } (G) $. In this paper, we first focus on the (1, 2)-rainbow connection number of $G$ depending on some constraints of $ \overline{G} $. Then, we characterize the graphs of order $n$ with (1, 2)-rainbow connection number $ n − 1 $ or $ n − 2 $. Using this result, we investigate the Nordhaus-Gaddum-Type problem of (1, 2)-rainbow connection number and prove that $ rc_{1,2}(G) + rc_{1,2}( \overlina{G} ) \le n + 2 $ for connected graphs $ G $ and $ \overline{G} $. The equality holds if and only if $G$ or $ \overline{G} $ is isomorphic to a double star.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 371-384
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Proper (Strong) Rainbow Connection of Graphs
Autorzy:
Jiang, Hui
Li, Wenjing
Li, Xueliang
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/32083886.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
proper (strong) rainbow connection number
Cartesian product
chromatic index
Opis:
A path in an edge-colored graph $G$ is called a rainbow path if no two edges on the path have the same color. The graph $G$ is called rainbow connected if between every pair of distinct vertices of $G$, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of $G$ is proper. The proper rainbow connection number of $G$, denoted by $prc(G)$, is the minimum number of colors needed to properly color the edges of $G$ so that $G$ is rainbow connected. Similarly, the proper strong rainbow connection number of $G$, denoted by $psrc(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that for any two distinct vertices of $G$, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if \(G = K_{p1} \Box \dots \Box K_{pn}\), where $n≥ 1$, and $p_1, . . ., p_n>1$ are integers, then $prc(G) = psrc(G) = χ^′(G)$, where $χ^′(G)$ denotes the chromatic index of $G$. Finally, we investigate some suffcient conditions for a graph $G$ to satisfy $prc(G) = rc(G)$, and make some slightly positive progress by using a relation between $rc(G)$ and the girth of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 469-479
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies