Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grudzień-Rakoczy, Małgorzata" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Selection of Casting Materials for Working Parts of Machines for the Forestry Sector
Autorzy:
Pirowski, Zenon
Bitka, Adam
Grudzień-Rakoczy, Małgorzata
Małysza, Marcin
Pysz, Stanisław
Wieliczko, Piotr
Wilk-Kołodziejczyk, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/2106604.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
mulching
forestry tools
tribological wear
abrasion-resistant cast steel
hardfacing surface
Opis:
The article was created as a result of the work TECHMATSTRATEG 1 program “Modern Material Technologies” as part of the project with the acronym INNOBIOLAS entitled “Development of innovative working elements of machines in the forestry sector and biomass processing based on high-energy surface modification technologies of the surface layer of cast elements”; agreement No. TECHMATSTRATEG1/348072/2/NCBR/2017. The article discusses the procedure for selecting casting materials that can meet the high operational requirements of working tools of mulching machines: transfer of high static and dynamic loads, resistance to tribological wear, corrosion resistance in various environments. The mulching process was briefly described, then the alloys were selected for experimental tests, model alloys were made and perform material tests were carried out in terms of functional and technological properties. The obtained results allowed to select the alloy where the test castings were made.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 743--752
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing a Methodology for Building the Knowledge Base and Application Procedures Supporting the Process of Material and Technological Conversion
Autorzy:
Wilk-Kołodziejczyk, Dorota
Jaśkowiec, Krzysztof
Bitka, Adam
Pirowski, Zenon
Grudzień-Rakoczy, Małgorzata
Chrzan, Konrad
Małysza, Marcin
Doroszewski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2134111.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial intelligence
material conversion
technological conversion
selection of parameters
prediction of mechanical properties
Opis:
The article presents the developed IT solutions supporting the material and technological conversion process in terms of the possibility of using the casting technology of selected alloys to produce products previously manufactured with the use of other methods and materials. The solutions are based on artificial intelligence, machine learning and statistical methods. The prototype module of the information and decision-making system allows for a preliminary assessment of the feasibility of this type of procedure. Currently, the selection of the method of manufacturing a product is based on the knowledge and experience of the technologist and constructor. In the described approach, this process is supported by the proprietary module of the information and decision-making system, which, based on the accumulated knowledge, allows for an initial assessment of the feasibility of a selected element in a given technology. It allows taking into account a large number of intuitive factors, as well as recording expert knowledge with the use of formal languages. Additionally, the possibility of searching for and collecting data on innovative solutions, supplying the knowledge base, should be taken into account. The developed and applied models should allow for the effective use and representation of knowledge expressed in linguistic form. In this solution, it is important to use methods that support the selection of parameters for the production of casting. The type, number and characteristics of data have an impact on the effectiveness of solutions in terms of classification and prediction of data and the relationships detected.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 1085--1091
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies