- Tytuł:
- The Path-Pairability Number of Product of Stars
- Autorzy:
-
Jobson, Adam S.
Kézdy, André.
Lehel, Jenő
Mészáros, Gábor - Powiązania:
- https://bibliotekanauki.pl/articles/31343186.pdf
- Data publikacji:
- 2019-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
path-pairability
weak linkage
Cartesian product
star-like network
telecommunications network - Opis:
- The study of a graph theory model of certain telecommunications network problems lead to the concept of path-pairability, a variation of weak linkedness of graphs. A graph G is k-path-pairable if for any set of 2k distinct vertices, si, ti, 1 ≤ i ≤ k, there exist pairwise edge-disjoint si, ti-paths in G, for 1 ≤ i ≤ k. The path-pairability number is the largest k such that G is k-path-pairable. Cliques, stars, the Cartesian product of two cliques (of order at least three) are ‘fully pairable’; that is ⌊n/2⌋-pairable, where n is the order of the graph. Here we determine the path-pairability number of the Cartesian product of two stars.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 909-924
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki