- Tytuł:
- Characterizations of Graphs Having Large Proper Connection Numbers
- Autorzy:
-
Lumduanhom, Chira
Laforge, Elliot
Zhang, Ping - Powiązania:
- https://bibliotekanauki.pl/articles/31340917.pdf
- Data publikacji:
- 2016-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
edge coloring
proper-path coloring
strong proper-path coloring - Opis:
- Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of colors required for a proper-path coloring or strong proper-path coloring of G is called the proper connection number pc(G) or strong proper connection number spc(G) of G, respectively. If G is a nontrivial connected graph of size m, then pc(G) ≤ spc(G) ≤ m and pc(G) = m or spc(G) = m if and only if G is the star of size m. In this paper, we determine all connected graphs G of size m for which pc(G) or spc(G) is m − 1,m − 2 or m − 3.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 439-453
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki