Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, B. S." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
A novel method to extract vanadium from high-grade vanadium slag: non-salt roasting and alkaline leaching
Autorzy:
Liu, B.
Meng, L.
Zheng, S.
Li, M.
Wang, S.
Powiązania:
https://bibliotekanauki.pl/articles/110480.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
high-grade vanadium slag
cleaner production
non-salt roasting
alkaline leaching
mechanisms
Opis:
A new method using non-salt roasting-alkaline leaching to treat vanadium slag was proposed in this study. The V(III) in vanadium slag is oxidized to V(V) by roasting and the latter can be effectively leached out as vanadate by alkaline leaching. This method possesses distinct advantage of being able to treat high-grade vanadium slag. For the South Africa high-grade vanadium slag, the maximum vanadium recovery of 98% was achieved when the reaction conditions were roasting temperature of 850 °C, roasting time of 2 h, alkali concentration of 30 wt.%, leaching temperature of 210 °C, and leaching time of 2 h. The roasting and leaching mechanisms have been well elucidated based on the XRD and SEM analysis results. The phases transitions of vanadium slag were clearly presented. This work has laid the foundation for the industrial application of non-salt roasting-alkaline leaching and provided new insights into effective extraction of high-grade vanadium slag.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 657-667
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simultaneous extraction of vanadium and chromium from vanadium slag using low-pressure liquid phase oxidation method
Autorzy:
Xia, J.-P.
Zheng, S.-L.
Wang, S.-N.
Liu, B.
Zou, X.
Powiązania:
https://bibliotekanauki.pl/articles/110818.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
vanadium slag
low pressure leaching
liquid phase oxidation
kinetics
Opis:
A low-pressure liquid oxidation method was proposed and proven to be effective to extract vanadium and chromium simultaneously from the vanadium slag in concentrated NaOH aqueous solutions. The effect of temperature, NaOH mass concentration, liquid-to-solid mass ratio, stirring speed and pressure on the extraction of vanadium and chromium in NaOH aqueous solutions were systematically investigated. Under the optimal reaction conditions (temperature of 473 K, liquid-to-solid mass ratio of 6:1, stirring speed of 700 rpm, NaOH mass concentration of 50%, pressure of 1 MPa and reaction time of 180 min), the vanadium and chromium recovery reached 95% and 90%, respectively. It was found that the reaction temperature and NaOH concentration were important factors for the extraction of vanadium and chromium. The kinetics of the decomposition of vanadium slag in concentrated NaOH aqueous under low pressure was analyzed using the shrinking core model, and the results indicated that the extraction of vanadium and chromium were both governed by the internal diffusion step, with apparent activation energies calculated to be 26.22 and 32.79 kJ/mol, respectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 609-619
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ship recognition and tracking system for intelligent ship based on deep learning framework
Autorzy:
Liu, B.
Wang, S. Z.
Xie, Z. X.
Zhao, J. S.
Li, M. F.
Powiązania:
https://bibliotekanauki.pl/articles/117419.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
intelligent ship
deep learning framework
ship recognition system
ship tracking system
ship recognition and tracking system
intelligent navigation
autonomous ship
maritime safety
Opis:
Automatically recognizing and tracking dynamic targets on the sea is an important task for intelligent navigation, which is the prerequisite and foundation of the realization of autonomous ships. Nowadays, the radar is a typical perception system which is used to detect targets, but the radar echo cannot depict the target’s shape and appearance, which affects the decision-making ability of the ship collision avoidance. Therefore, visual perception system based on camera video is very useful for further supporting the autonomous ship navigational system. However, ship’s recognition and tracking has been a challenge task in the navigational application field due to the long distance detection and the ship itself motion. An effective and stable approach is required to resolve this problem. In this paper, a novel ship recognition and tracking system is proposed by using the deep learning framework. In this framework, the deep residual network and cross-layer jump connection policy are employed to extract the advanced ship features which help enhance the classification accuracy, thus improves the performance of the object recognition. Experimentally, the superiority of the proposed ship recognition and tracking system was confirmed by comparing it with state of-the-art algorithms on a large number of ship video datasets.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 699-705
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies