Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "edge-connectivity" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Graphs with Large Generalized (Edge-)Connectivity
Autorzy:
Li, Xueliang
Mao, Yaping
Powiązania:
https://bibliotekanauki.pl/articles/31340594.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
(edge-)connectivity
Steiner tree
internally disjoint trees
edge-disjoint trees
packing
generalized (edge-)connectivity
Opis:
The generalized $k$-connectivity $ \kappa_k (G) $ of a graph $G$, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized $k$-edge-connectivity $ \lambda_k (G)$. In this paper, graphs of order $n$ such that $ \kappa_k (G) = n - k/2 - 1 $ and $ \lambda_k (G) = n - k/2 - 1 $ for even $k$ are characterized.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 931-958
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More on the Rainbow Disconnection in Graphs
Autorzy:
Bai, Xuqing
Chang, Renying
Huang, Zhong
Li, Xueliang
Powiązania:
https://bibliotekanauki.pl/articles/32222544.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
edge-connectivity
rainbow disconnection coloring (number)
Erdős-Gallai type problem
Nordhaus-Gaddum type bounds
complexity
NP-hard (complete)
Opis:
Let G be a nontrivial edge-colored connected graph. An edge-cut R of G is called a rainbow-cut if no two of its edges are colored the same. An edge-colored graph G is rainbow disconnected if for every two vertices u and v of G, there exists a u-v-rainbow-cut separating them. For a connected graph G, the rainbow disconnection number of G, denoted by rd(G), is defined as the smallest number of colors that are needed in order to make G rainbow disconnected. In this paper, we first determine the maximum size of a connected graph G of order n with rd(G) = k for any given integers k and n with 1 ≤ k ≤ n − 1, which solves a conjecture posed only for n odd in [G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018) 1007–1021]. From this result and a result in their paper, we obtain Erdős-Gallai type results for rd(G). Secondly, we discuss bounds on rd(G) for complete multipartite graphs, critical graphs with respect to the chromatic number, minimal graphs with respect to the chromatic index, and regular graphs, and we also give the values of rd(G) for several special graphs. Thirdly, we get Nordhaus-Gaddum type bounds for rd(G), and examples are given to show that the upper and lower bounds are sharp. Finally, we show that for a connected graph G, to compute rd(G) is NP-hard. In particular, we show that it is already NP-complete to decide if rd(G) = 3 for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph G it is NP-complete to decide whether G is rainbow disconnected.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1185-1204
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies