Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rainbow connection" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On Proper (Strong) Rainbow Connection of Graphs
Autorzy:
Jiang, Hui
Li, Wenjing
Li, Xueliang
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/32083886.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
proper (strong) rainbow connection number
Cartesian product
chromatic index
Opis:
A path in an edge-colored graph $G$ is called a rainbow path if no two edges on the path have the same color. The graph $G$ is called rainbow connected if between every pair of distinct vertices of $G$, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of $G$ is proper. The proper rainbow connection number of $G$, denoted by $prc(G)$, is the minimum number of colors needed to properly color the edges of $G$ so that $G$ is rainbow connected. Similarly, the proper strong rainbow connection number of $G$, denoted by $psrc(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that for any two distinct vertices of $G$, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if \(G = K_{p1} \Box \dots \Box K_{pn}\), where $n≥ 1$, and $p_1, . . ., p_n>1$ are integers, then $prc(G) = psrc(G) = χ^′(G)$, where $χ^′(G)$ denotes the chromatic index of $G$. Finally, we investigate some suffcient conditions for a graph $G$ to satisfy $prc(G) = rc(G)$, and make some slightly positive progress by using a relation between $rc(G)$ and the girth of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 469-479
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rainbow Vertex-Connection and Forbidden Subgraphs
Autorzy:
Li, Wenjing
Li, Xueliang
Zhang, Jingshu
Powiązania:
https://bibliotekanauki.pl/articles/31342433.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-rainbow path
rainbow vertex-connection
forbidden sub-graphs
Opis:
A path in a vertex-colored graph is called vertex-rainbow if its internal vertices have pairwise distinct colors. A vertex-colored graph G is rainbow vertex-connected if for any two distinct vertices of G, there is a vertex-rainbow path connecting them. For a connected graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is defined as the minimum number of colors that are required to make G rainbow vertex-connected. In this paper, we find all the families ℱ of connected graphs with |ℱ| ∈ {1, 2}, for which there is a constant k such that, for every connected ℱ-free graph G, rvc(G) ≤ diam(G) + k, where diam(G) is the diameter of G.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 143-154
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies