Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lin, Yu" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Effect of the degree of polymerization of nonylphenol polyoxyethylene ether on the dewatering of low-rank coal
Autorzy:
Li, Lin
He, Meng
Liu, Mingpu
Lin, Mengyu
Hu, Shanpei
Yu, Hao
Wang, Qingbiao
You, Xiaofang
Powiązania:
https://bibliotekanauki.pl/articles/1449205.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
low-rank coal
NPEO
dewatering
adsorption
long-flame coal
Opis:
In this study, we investigated the effect of the hydrophilic ethylene oxide chain lengths (i.e., degree of polymerization) of nonylphenol polyoxyethylene ether (NPEO-x, x = 8, 10, and 12) on the dewatering of low-rank coal slime through dewatering and adsorption experiments and X-ray photoelectron spectroscopy (XPS) measurements. The dewatering experiments showed that the adsorption of NPEO changed the water content of the low-rank coal slime: NPEO-8 achieved the best effect, followed, in decreasing order, by NPEO-10 and NPEO-12. Adsorption experiments revealed that the adsorption isotherms of NPEO-x on the low-rank coal surface conform with the Langmuir model, and its adsorption kinetics follow the pseudo-second-order kinetic equation. Furthermore, the adsorption is a spontaneous process and controlled by both intraparticle diffusion and liquid film diffusion. The XPS results showed that the adsorption of NPEO-x decreased the content of oxygencontaining groups and, thus, improved the hydrophobicity of the low-rank coal surface. Further, the use of NPEO-x with a low degree of polymerization (x = 8) improves the hydrophobicity of the coal surface and decreases the water content of low-rank coal slime.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 4; 723-736
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
RFID tag group recognition based on motion blur estimation and YOLOv2 improved by Gaussian algorithm
Autorzy:
Li, Lin
Yu, Xiao-Lei
Liu, Zhen-Lu
Zhao, Zhi-Min
Zhang, Ke
Zhou, Shan-Hao
Powiązania:
https://bibliotekanauki.pl/articles/2051852.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
RFID
YOLOv2
neural network
GRNN
Opis:
Effective recognition of tags in the dynamic measurement system would significantly improve the reading performance of the tag group, but the blurred outline and appearance of tag images captured in motion seriously limit the effectiveness of the existing tag group recognition. Thus, this paper proposes passive tag group recognition in the dynamic environment based on motion blur estimation and improved YOLOv2. Firstly, blur angles are estimated with a Gabor filter, and blur lengths are estimated through nonlinear modelling of a Generalized Regression Neural Network (GRNN). Secondly, tag recognition based on YOLOv2 improved by a Gaussian algorithm is proposed. The features of the tag group are analyzed by the Gaussian algorithm, the region of interest of the dynamic tag is effectively framed, and the tag foreground is extracted; Secondly, the data set of tag groups are trained by the end-to-end YOLOv2 algorithm for secondary screening and recognition, and finally the specific locations of tags are framed to meet the effective identification of tag groups in different scenes. A considerable number of experiments illustrate that the fusion algorithm can significantly improve recognition accuracy. Combined with the reading distance, the research presented in this paper can more accurately optimize the three-dimensional structure of the tag group, improve the reading performance of the tag group, and avoid the interference and collision of tags in the communication channel. Compared with the previous template matching algorithm, the tag group recognition ability put forward in this paper is improved by at least 13.9%, and its reading performance is improved by at least 6.2% as shown in many experiments.
Źródło:
Metrology and Measurement Systems; 2022, 29, 1; 53-74
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies