Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "arbitrarily partitionable graphs" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
More Aspects of Arbitrarily Partitionable Graphs
Autorzy:
Bensmail, Julien
Li, Binlong
Powiązania:
https://bibliotekanauki.pl/articles/32222538.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
arbitrarily partitionable graphs
partition into connected subgraphs
Hamiltonicity
Opis:
A graph G of order n is arbitrarily partitionable (AP) if, for every sequence (n1, . . ., np) partitioning n, there is a partition (V1, . . ., Vp) of V (G) such that G[Vi] is a connected ni-graph for i = 1, . . ., p. The property of being AP is related to other well-known graph notions, such as perfect matchings and Hamiltonian cycles, with which it shares several properties. This work is dedicated to studying two aspects behind AP graphs. On the one hand, we consider algorithmic aspects of AP graphs, which received some attention in previous works. We first establish the NP-hardness of the problem of partitioning a graph into connected subgraphs following a given sequence, for various new graph classes of interest. We then prove that the problem of deciding whether a graph is AP is in NP for several classes of graphs, confirming a conjecture of Barth and Fournier for these. On the other hand, we consider the weakening to APness of su cient conditions for Hamiltonicity. While previous works have suggested that such conditions can sometimes indeed be weakened, we here point out cases where this is not true. This is done by considering conditions for Hamiltonicity involving squares of graphs, and claw- and net-free graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1237-1261
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies