Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "scanning microscopy" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Deformation Mechanisms and Fracture of Ni-Based Metallic Glasses
Autorzy:
Lesz, S.
Griner, S.
Nowosielski, R.
Powiązania:
https://bibliotekanauki.pl/articles/353790.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
metals
transmission electron microscopy
scanning electron microscopy
fracture
shear bands
Opis:
The cracking of materials and fracture surface is of great practical and academic importance. Over the last few years the development of the fractography of crystalline alloys resulted in a useful tool for the prediction or failure analysis. Many attempts have been made to observe cracks using optical microscopy, X-ray topography and transmission electron microscopy (TEM). Of these techniques, the resolution of optical microscopy and X-ray topography is too poor. By contrast, the resolution of TEM is high enough for detailed information to be obtained. However, in order to apply TEM observations, a thin foil specimen must be prepared, and it is usually extremely difficult to prepare such a specimen from a pre-selected region containing a crack. In the present work, deformation mechanisms fracture surfaces of Ni-based metallic glass samples have been studied by specially designed experiments. In order to study the deformation mechanisms and fracture the Ni-based metallic glasses have been investigated in the tensile test. The structure and fracture surfaces after the decohesion process in tensile tests were observed using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The studies of structure were performed on thin foils. Moreover the investigated tape was subjected to a banding test. Then, the tape was straightened and the thin foil from the area of maximum strain was prepared. This thin foil sample was deformed before the TEM investigation to obtain local tears.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 2A; 791-796
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Milling Time on Amorphization of Mg-Zn-Ca Powders Synthesized by Mechanical Alloying Technique
Autorzy:
Lesz, S.
Kremzer, M.
Gołombek, K.
Nowosielski, R.
Powiązania:
https://bibliotekanauki.pl/articles/354717.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Mg-based powders
transmission electron microscopy
scanning electron microscopy
mechanical alloying
Opis:
Mg60 Zn35 Ca5 amorphous powder alloys were synthesized by mechanical alloying (MA) technique. The results of the influence of high-energy ball-milling time on amorphization of the Mg60 Zn35 Ca5 elemental blend (intended for biomedical application) were presented in the study. The amorphization process was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). Initial elemental powders were mechanically alloyed in a Spex 8000 high-energy ball mill at different milling times (from 3 to 24 h). Observation of the powder morphology after various stages of milling leads to the conclusion that with the increase of the milling time the size of the powder particles as well as the degree of aggregation change. The partially amorphous powders were obtained in the Mg60 Zn35 Ca5 alloy after milling for 13-18h. The results indicate that this technique is a powerful process for preparing Mg60 Zn35 Ca5 alloys with amorphous and nanocrystalline structure.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 2; 845-851
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling
Autorzy:
Lesz, S.
Tański, T.
Hrapkowicz, B.
Karolus, M.
Popis, J.
Wiechniak, K.
Powiązania:
https://bibliotekanauki.pl/articles/1818808.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Mg-based alloys
scanning electron microscopy
X-ray diffraction analysis
mechanical alloying
stopy magnezu
skaningowa mikroskopia elektronowa
rentgenowska analiza dyfrakcyjna
mechaniczna synteza
Opis:
Purpose: This paper explains mechanical synthesis which uses powders or material chunks in order to obtain phases and alloys. It is based on an example of magnesium powders with various additives, such as zinc, calcium and yttrium. Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD) method, scanning electron microscopy (SEM), determining particle size distributions with laser measuring, Vickers microhardness. Findings: The particle-size of a powder and microhardness value depend on the milling time. Research limitations/implications: Magnesium gained its largest application area by creating alloys in combination with other elements. Magnesium alloys used in various industry contain various elements e.g. rare-earth elements (REE). Magnesium alloys are generally made by casting processes. Consequently, the search for new methods of obtaining materials such as mechanical alloying (MA) offers new opportunities. The MA allows for the production of materials with completely new physico-chemical properties. Originality/value: Thanks to powder engineering it is possible to manufacture materials with specific chemical composition. These materials are characterized by very high purity, specified porosity, fine-grain structure, complicated designs. These are impossible to obtain with traditional methods. Moreover it is possible to refine the process even further minimalizing the need for finishing or machining, making the material losses very small or negligible. Furthermore material manufactured in such a way can be thermally or chemically processed without any problems.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 103, 2; 49--59
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies