Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "high temperature" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Microstructure and High Temperature Oxidation Properties of Fe-Cr-Ni HK30 Alloy Manufactured by Metal Injection Molding
Autorzy:
Wi, Dong-Yeol
Kim, Young-Kyun
Yoon, Tae-Sik
Lee, Kee-Ahn
Powiązania:
https://bibliotekanauki.pl/articles/356708.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
metal injection molding
HK30
microstructure
high temperature oxidation
Opis:
This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm2, respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 2; 525-530
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High Temperature Random Stack Creep Property of Ni-Cr-Al based Powder Porous Metal Manufactured with Powder Sintering Process
Autorzy:
Kang, Tae-Hoon
Kim, Kyu-Sik
Park, Man-Ho
Lee, Kee-Ahn
Powiązania:
https://bibliotekanauki.pl/articles/353154.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
powder porous metal
high-temperature
compression test
creep property
Opis:
Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 μm by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800°C) compressive strength of 0.76 MPa. A 800°C random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10-10 s-1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 2; 513-518
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Production of High-Purity Tantalum Metal Powder for Capacitors Using Self-Propagating High-Temperature Synthesis
Autorzy:
Lee, Yong-Kwan
Sim, Jae-Jin
Byeon, Jong-Soo
Lee, Yong-Tak
Cho, Yeong-Woo
Kim, Hyun-Chul
Heo, Sung-Gue
Lee, Kee-Ahn
Seo, Seok-Jun
Park, Kyoung-Tae
Powiązania:
https://bibliotekanauki.pl/articles/2049150.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
tantalum
self-propagating high-temperature synthesis
tantalum oxide
magnesium
capacitor
Opis:
In this study, high-purity tantalum metal powder was manufactured via self-propagating high-temperature synthesis. During the process, Ta2O5 and Mg were used as the raw material powder and the reducing agent, respectively, and given that combustion rate and reaction temperature are important factors that influence the success of this process, these factors were controlled by adding an excessive mass of the reducing agent (Mg) i.e., above the chemical equivalent, rather than by using a separate diluent. It was confirmed that Ta metal powder manufactured after the process was ultimately manufactured 99.98% high purity Ta metal powder with 0.5 μm particle size. Thus, it was observed that adding the reducing reagent in excess favored the manufacture of high-purity Ta powder that can be applied in capacitors.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 4; 935-939
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High Temperature Oxidation Property of Ni Based Superalloy CM247LC Produced Via Selective Laser Melting Process
Autorzy:
Lee, Jung-Uk
Kim, Young-Kyun
Seo, Seong-Moon
Lee, Kee-Ahn
Powiązania:
https://bibliotekanauki.pl/articles/2203720.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Ni-based superalloy
selective laser melting
directional solidification
microstructure
high temperature oxidation property
Opis:
CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion (L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 1; 107--112
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies