Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Andersson, Tom" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
The use of generative models to speed up the discovery of materials
Autorzy:
Coto, Andrea Gregores
Precker, Christian Eike
Andersson, Tom
Laukkanen, Anssi
Suhonen, Tomi
Rodriguez, Pilar Rey
Muíños-Landín, Santiago
Powiązania:
https://bibliotekanauki.pl/articles/29520053.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
artificial intelligence
materials science
high-performance material
generative model
Opis:
Material Science is a key factor in the evolution of many industrial sectors. Fields such as the aeronautics, automotive, construction, and biotechnology industries have experienced tremendous development with the introduction of advanced, high-performance materials. Such materials not only provide new functionalities to products, but also significant consequences in terms of economic and environmental sustainability of the products and processes triggered by the more efficient use of energy that they provide. Under this scenario, materials that provide such high performance, such as high entropy alloys (HEAs) or polymer derived ceramics (PDCs), have captured the attention of both industry and researchers in recent years. However, the remarkable number of resources required to develop such materials, from its design phase to its synthesis and characterization, means that the discovery of new high-performance materials is moving at a relatively low pace. This fact places emergent strategies based on artificial intelligence (AI) for the design of materials in a good position to be used to accelerate the whole process, providing an impulse in the initial phases of materials design. The enormous number of combinations of elements and the complexity of synthesizability conditions of HEAs and PDCs respectively, paves the way to the deployment of AI techniques such as Generative Models addressed in this work to create synthetic HEAs and PDCs for highly intensive industrial processes. A specific conditional tabular generative adversarial network (CTGAN) was developed to be used on tabular data to generate novel synthetic compounds for each kind of material. The generated synthetic data was based on the conventional parametric design parameters used for HEAs and PDCs, with specific datasets created for them. The real and generated data are compared, calculation of phase diagrams (CALPHAD) simulations are provided to evaluate the performance of the generated samples and a verification of the novel generated compositions is done in open materials databases available in the literature.
Źródło:
Computer Methods in Materials Science; 2023, 23, 1; 13-26
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies