Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "total chromatic number" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On local antimagic total labeling of complete graphs amalgamation
Autorzy:
Lau, Gee-Choon
Shiu, Wai-Chee
Powiązania:
https://bibliotekanauki.pl/articles/29519348.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
local antimagic (total) chromatic number
amalgamation
complete graph
Opis:
Let G = (V,E) be a connected simple graph of order p and size q. A graph G is called local antimagic (total) if G admits a local antimagic (total) labeling. A bijection g : E → {1, 2, . . . , q} is called a local antimagic labeling of G if for any two adjacent vertices u and v, we have $ g^+ (u) \ne g^+ (v) $, where $ g^+ (u) = \Sigma_{e∈E(u)} \text{ } g(e) $, and E(u) is the set of edges incident to u. Similarly, a bijection f : V (G)∪E(G) → {1, 2, . . . , p+q} is called a local antimagic total labeling of G if for any two adjacent vertices u and v, we have $ w_f (u) \ne w_f (v) $, where $ w_f (u) = f(u) + \Sigma_{e∈E(u)} f(e) $. Thus, any local antimagic (total) labeling induces a proper vertex coloring of G if vertex v is assigned the color $g^+ (v) $ (respectively, $ w_f (u) $). The local antimagic (total) chromatic number, denoted $χ_\text{la } (G) $ (respectively $χ_\text{lat } (G) $ ), is the minimum number of induced colors taken over local antimagic (total) labeling of G. In this paper, we determined $ χ_\text{lat } (G) $ where G is the amalgamation of complete graphs. Consequently, we also obtained the local antimagic (total) chromatic number of the disjoint union of complete graphs, and the join of $ K_1 $ and amalgamation of complete graphs under various conditions. An application of local antimagic total chromatic number is also given.
Źródło:
Opuscula Mathematica; 2023, 43, 3; 429-453
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Every graph is local antimagic total and its applications
Autorzy:
Lau, Gee-Choon
Schaffer, Karl
Shiu, Wai-Chee
Powiązania:
https://bibliotekanauki.pl/articles/29519430.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
local antimagic (total) chromatic number
Cartesian product
join product
Opis:
Let $ G = (V, E) $ be a simple graph of order $ p $ and size $ q $. A graph $ G $ is called local antimagic (total) if $ G $ admits a local antimagic (total) labeling. A bijection $ g : E → {1, 2, . . . , q} $ is called a local antimagic labeling of $ G $ if for any two adjacent vertices $ u $ and $ v $, we have $g^+(u) ≠ g^+(v) $, where $ g^+(u) = \Sigma_{e∈E(u)} g(e) $, and $ E(u) $ is the set of edges incident to $ u $. Similarly, a bijection $f : V (G)∪E(G) → {1, 2, . . . , p+q} $ is called a local antimagic total labeling of $ G $ if for any two adjacent vertices $ u $ and $ v $, we have $ w_f (u) ≠ w_f (v) $, where $ w_f (u) = f(u) + \Sigma_{e∈E(u)} f(e) $. Thus, any local antimagic (total) labeling induces a proper vertex coloring of $ G $ if vertex $ v $ is assigned the color $ g^+ (v) $ (respectively, $ w_f (u) $). The local antimagic (total) chromatic number, denoted $ χ_{la} (G) $ (respectively $ χ_{lat} (G)$ ), is the minimum number of induced colors taken over local antimagic (total) labeling of $ G $. We provide a short proof that every graph $ G $ is local antimagic total. The proof provides sharp upper bound to $ χ_{lat} (G) $. We then determined the exact $ χ_{lat} (G) $, where $ G $ is a complete bipartite graph, a path, or the Cartesian product of two cycles. Consequently, the $ χ_{la} (G ∨ K_1) $ is also obtained. Moreover, we determined the $ χ_{la} (G ∨ K_1) $ and hence the $χ_{lat} (G) $ for a class of 2-regular graphs $ G $ (possibly with a path). The work of this paper also provides many open problems on $ χ_{lat} (G) $. We also conjecture that each graph $ G $ of order at least 3 has $ χ_{lat} (G) ≤ χ_{la} (G) $.
Źródło:
Opuscula Mathematica; 2023, 43, 6; 841-864
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies