Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model-based clustering" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Estimation of parameters of Gaussian mixture models by a hybrid method combining a self-adaptive differential evolution with the EM algorithm
Estymacja parametrów modeli mieszanin rozkładów normalnych przy pomocy metody hybrydowej łączącej samoadaptacyjną ewolucję różnicową z algorytmem EM
Autorzy:
Kwedlo, W.
Powiązania:
https://bibliotekanauki.pl/articles/88410.pdf
Data publikacji:
2014
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
mieszaniny rozkładów normalnych
ewolucja różnicowa
algorytm EM
grupowanie danych
Gaussian mixture models
differential evolution
expectation maximization
model-based clustering
Opis:
In the paper the problem of learning of Gaussian mixture models (GMMs) is considered. A new approach based on hybridization of a self-adaptive version of differential evolution (DE) with the classical EM algorithm is described. In this approach, called DEEM, the EM algorithm is run until convergence to fine-tune each solution obtained by the mutation and crossover operators of DE. To avoid the problem with parameter representation and infeasible solutions we use a method in which the covariance matrices are encoded using their Cholesky factorizations. In a simulation study GMMs were used to cluster synthetic datasets differing by a degree of separation between clusters. The results of experiments indicate that DE-EM outperforms the standard multiple restart expectation-maximization algorithm (MREM). For datasets with high number of features it also outperforms the state of-the-art random swap EM (RSEM).
W pracy poruszono problem uczenia modeli mieszanin rozkładów normalnych. Zaproponowano nowe podejście, nazwane DE-EM, oparte na hybrydyzacji samoadaptacyjnego algorytmu ewolucji różnicowej i klasycznego algorytmu EM. W nowej metodzie rozwiązanie otrzymane jako wynik operatorów mutacji i krzyżowania jest poddawane optymalizacji lokalnej, prowadzonej aż do momentu uzyskania zbieżności, przez algorytm EM. Aby uniknąć problemu z reprezentacją macierzy kowariancji i niedopuszczalności rozwiązań użyto metody, w której macierze kowariancji są kodowane przy pomocy dekompozycji Cholesky’ego. W badaniach symulacyjnych modele mieszanin rozkładów normalnych zastosowano do grupowania danych syntetycznych. Wyniki eksperymentów wskazują, że metoda DE-EM osiąga lepsze wyniki niż standardowa technika wielokrotnego startu algorytmu ˙ EM. Dla zbiorów danych z dużą liczbą cech, metoda osiąga lepsze wyniki niż technika losowej wymiany rozwiązań połączona z algorytmem EM.
Źródło:
Advances in Computer Science Research; 2014, 11; 109-123
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies