Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Radwański, W." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Zastosowanie metod FEG SEM i EBSD do badań struktury stali AHSS na różnych etapach procesu ciągłego wyżarzania
Application of FEG-SEM and EBSD methods in examinations of AHSS steel structure at various stages of continuous annealing process
Autorzy:
Radwański, K.
Kuziak, R.
Zalecki, W.
Wrożyna, A.
Molenda, R.
Opara, J.
Powiązania:
https://bibliotekanauki.pl/articles/181928.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
stal DP
obróbka cieplna
wyżarzanie
FEG SEM
EBSD
DP steel
heat treatment
annealing
FEG-SEM
Opis:
Celem pracy było wykorzystanie metod FEG SEM i EBSD w celu określenia wpływu parametrów procesu ciągłego wyżarzania na zmiany struktury taśm w stanie po walcowaniu na zimno. Obróbkę cieplną wykonano w zakresie temperatur 600÷820°C. W tym celu przeprowadzono również symulacje fizyczne cykli cieplnych ciągłego wyżarzania na próbkach taśm, które poddano następnie badaniom właściwości mechanicznych w statycznej próbie rozciągania. Badania struktury wykonano za pomocą elektronowego mikroskopu skaningowego FEG SEM z szerokim zastosowaniem metody EBSD. Scharakteryzowano możliwości badawcze metody EBSD oraz zastosowano je w badaniach procesów zdrowienia i rekrystalizacji statycznej oraz struktur powstałych po przemianach fazowych w oparciu o analizę parametrów takich jak: Kernel Average Misorientation (KAM), Grain Average Misorientation (GAM), Image Quality (IQ) i kąty dezorientacji. W wyniku przeprowadzonych badań stwierdzono, że w zakresie temperatur 600÷720°C zachodzą procesy zdrowienia i rekrystalizacji statycznej taśm, które ulegają przyspieszeniu ze wzrostem temperatury. Procesy te zachodzą odmiennie w obszarach, w których po walcowaniu na zimno występował ferryt i perlit. W przypadku perlitu procesowi powstawania nowych ziarn towarzyszy dyfuzja węgla i koagulacja cząstek cementytu na granicach ziarn. Począwszy od temperatury 730°C w strukturze obserwuje się martenzyt oraz bainit, których udział powierzchniowy rośnie wraz ze zwiększaniem temperatury wyżarzania. Po przeprowadzonych cyklach obróbki cieplnej taśmy charakteryzują się następującymi właściwościami mechanicznymi: Rp0.2 = 300÷450 MPa, Rm = 630÷720 MPa, A50 = 11÷17%.
The study was aimed at use of FEG SEM and EBSD methods in order to determine the impact of continuous annealing process parameters on changes in strips structure following cold rolling. Heat treatment was conducted in the temperature range 600÷820°C. Moreover, for this purpose, physical simulations were conducted of continuous annealing thermal cycles on samples of strips which, subsequently were subject to static tensile test. Examinations of the structure were conducted by means of scanning electron microscope FEG SEM with broad application of EBSD method. Research capacities of EBSD method were characterized and applied in examinations of recovery and static recrystallization as well as structures formed as a result of phase transitions based on analysis of parameters such as: Kernel Average Misorientation (KAM), Grain Average Misorientation (GAM), Image Quality (IQ) and misorientation angles. As a result of the conducted examinations, it was found that in the temperature range 600÷720°C recovery and static recrystallization of strips occur, which are accelerated along with increase in temperature. These processes differ in the areas with presence of ferrite and pearlite following cold rolling. In case of pearlite, the process of new grain formation is accompanied by carbon diffusion and coagulation of cementite particles on grain boundaries. Starting from the temperature of 730°C, martensite and bainite are observed in the structure, the surface share of which increases along with increase in the temperature of annealing. Following the conducted cycles of heat treatment, the strips are characterized with the following mechanical properties: Rp0.2 = 300÷450 MPa, Rm = 630÷720 MPa, A50 = 11÷17%.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 2, 2; 136-147
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adjustment of bainitic hardenability to meet critical requirements for steel products new applications
Regulacja hartowności bainitycznej w celu spełnienia krytycznych wymagań dla nowych zastosowań wyrobów stalowych
Autorzy:
Kuziak, R.
Kania, Z.
Roelofs, H.
Zalecki, W.
Radwański, K.
Molenda, R.
Powiązania:
https://bibliotekanauki.pl/articles/182203.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
bainitic hardenability
bainitic steel
phase transformations
hartowność bainityczna
stal bainityczna
przemiany fazowe
Opis:
This paper presents the results of the investigation aimed at identification of the optimum conditions for obtaining the maximum volume fraction and stability of retained austenite against mechanical loading in commercial bainitic steel produced by Swiss Steel AG. The volume fraction and stability of this phase is crucial for achieving the advantageous effect of transformation induced plasticity caused by its transformation to martensite during deformation (TRIP effect). The investigation has shown that in order to achieve the optimal TRIP effect in the investigated steel, the decomposition of austenite into bainite should occur in the temperature range 430÷370°C. The range of temperatures of the bainitic transformation in case of continuous cooling of bars depends on their radius. For the smallest diameters, below 6 mm, the bainitic transformation start temperature is close to Ms temperature. However, the occurrence of recalescence effect slows down the rate of cooling which prevents against the martensite formation.
Artykuł prezentuje wyniki badań, których celem było określenie optymalnych warunków dla uzyskania maksymalnej zawartości austenitu resztkowego oraz jego odpowiedniej stabilności na obciążenia mechaniczne w komercyjnej stali bainitycznej produkowanej przez firmę Swiss Steel AG. Udział oraz stabilność decyduje o korzystnym wpływie przemiany tej fazy indukowanej odkształceniem (z ang. efekt TRIP) na właściwości mechaniczne i użytkowe wyrobów stalowych. Badania pokazały, że dla optymalizacji efektu TRIP w badanej stali, przemiana fazowa austenitu w bainit powinna zachodzić przy temperaturach z przedziału 430÷370°C. Zakres temperatur, w których zachodzi przemiana bainityczna w warunkach ciągłego chłodzenia prętów zależy od średnicy pręta. Dla najmniejszych średnic, poniżej 6 mm, przemiana zachodzi z austenitu silnie przechłodzonego, zaś temperatura początku przemiany przybliża się do temperatury Ms. Jednak efekt rekalescencji zmniejsza szybkość spadku temperatury, co przeciwdziała tworzeniu się martenzytu w strukturze stali.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 2, 2; 80-95
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies