Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gajda, Katarzyna" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The use of LA-ICP-MS as an auxiliary tool to assess the pulmonary toxicity of molybdenum(IV) sulfide (MoS2) nano- and microparticles
Autorzy:
Kuraś, Renata
Stępnik, Maciej
Domeradzka-Gajda, Katarzyna
Janasik, Beata
Powiązania:
https://bibliotekanauki.pl/articles/28761978.pdf
Data publikacji:
2024-03-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
microparticles
LA-ICP-MS
molybdenum(IV) disulfide
bioimaging
rat tissues
nanoparticles
Opis:
Objectives Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS₂) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS₂ in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS₂ nano- and microparticles vs. controls. Material and Methods The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS₂ levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. Results Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. Conclusions The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2024, 37, 1; 18-33
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clara cells protein, prolactin and transcription factors of protein NF-ĸB and c-Jun/AP-1 levels in rats inhaled to stainless steel welding dust and its soluble form
Autorzy:
Hałatek, Tadeusz
Stanisławska, Magdalena
Świercz, Radosław
Domeradzka-Gajda, Katarzyna
Kuraś, Renata
Wąsowicz, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/2162014.pdf
Data publikacji:
2018-10-23
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
prolactin
stainless welding
Clara cells protein
NF-kB
c-Jun/AP-1
LA-ICP-MS
Opis:
Objectives Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese, and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. Bronchiolar epithelium Clara cells/club cells, coordinate these inflammatory responses. Clara cells secretory protein (CC16) with ant-inflammatory role. Material and Methods The pulmonary toxicity of welding dust (WD) was assessed for Wistar rats exposed to 60 mg/m³ of respirable-size welding dust (mean diameter 1.17 μm for 1 and 2 weeks (6 h/day, 5 days/week)) or the aerosols of soluble form (SWD) in the nose-only exposure chambers. Additionally the effect of antiinflammatory betaine supplementation was assessed. Clara cells secretory protein, differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase – LDH) activities were determined in bronchoalveolar lavage fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) and prolactin concentrations were assessed in serum. Histopathology examination of lung, brain, liver, kidney, spleen was done. Additionally slices of brain and lung were exanimated in laser ablation inductively coupled plasma mass spectrometry. Results Both WD and SWD exposure evoked large bronchiolar infiltration shoved in histopathology examination. In this study, TBARS inversely correlated with a significant decrease of CC16 concentration that occurred after instillation of both WD and SWD indicating decreased anti- inflammatory potential in the lung. In WD exposed rats prolactin correlated with nuclear factor-kappa B (NF-κB), LDH, TBARS and serum levels Cr, Ni and inversely with c-Jun. In SWD exposed rats prolactin correlated with CC16 indicated effect of prolactin on the population of epithelial cells. Conclusions In the current study, deleterious effects of repeated inhalation stainless steel welding dust form on club (Clara) cell secretory protein (CC16) were demonstrated. Clara cells secretory protein relation with prolactin in exposed rats to welding dust were shown and explored whether the NF-κB and c-Jun/activator protein 1 related pathway was involved. Int J Occup Med Environ Health 2018;31(5):613–632
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2018, 31, 5; 613-632
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies