Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytmy uczenia" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Machine learning algorithms for the problem of optimizing the distribution of parcels in time-dependent networks: the case study
Autorzy:
Tarapata, Zbigniew
Kulas, Wojciech
Antkiewicz, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/2124716.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
parcel distribution
optimization
machine learning algorithms
time-dependent networks
dystrybucja przesyłek
optymalizacja
algorytmy uczenia maszynowego
sieci zależne czasowo
Opis:
In the paper we present machine learning algorithms for the problem of optimizing the distribution of parcels in stochastic time-dependent networks, which have been built as a part of some Distribution Optimization System. The problem solved was a modified VRPTW (Vehicle Routing Problem with Time Windows) with many warehouses, a heterogeneous fleet, travel times depending on the time of departure (stochastic time-dependent network) and an extensive cost function as an optimization criterion. To solve the problem a modified simulated annealing (SATM) algorithm has been proposed. The paper presents the results of the algorithm learning process: the calibration of input parameters and the study of the impact of parameters on the quality of the solution (calculation time, transport cost function value) depending on the type of input data. The idea is to divide the input data into classes according to a proposed classification rule and to propose several strategies for selecting the optimal set of calibration parameters. These strategies consist in solving some multi-criteria optimization tasks in which four criterion functions are used: the length of the designated routes, the computation time, the number of epochs used in the algorithm, the number of designated routes. The subproblem was building a network model of travel times that is used in constructed SATM algorithm to determine the travel time between recipients, depending on the time of departure from the start location. An attempt has been made to verify the research hypothesis that the time between two points can be estimated with sufficient accuracy depending on their geographical location and the time of departure (without reference to the micro-scale, i.e. the detailed structure of the road network). The research was conducted on two types of data for Warsaw: from transport companies and one of the Internet traffic data providers. Learning the network model of travel times has produced very promising results, which will be described in the paper.
Źródło:
Archives of Transport; 2022, 61, 1; 133--147
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies