Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nauki o pracy" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
2,3,7,8-Tetrachlorodibenzo-p-dioksyna : metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej ze spektrometrią mas
2,3,7,8-Tetrachlorodibenzo-p-dioxin : determining in workplace air with gas chromatography – mass spectrometry
Autorzy:
Zieliński, Marek
Twardowska, Ewa
Kucharska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/137561.pdf
Data publikacji:
2019
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2,3,7,8-TCDD
metoda oznaczania
metoda chromatografii gazowej
powietrze na stanowiskach pracy
nauki o zdrowiu
inżynieria środowiska
determination method
gas chromatography
workplace air
health sciences
environmental engineering
Opis:
Polichlorowane dibenzo-p-dioksyny (PCDD), w tym 2,3,7,8-tetrachlorodibenzo-p-dioksyna (TCDD), należą do grupy związków chemicznych zwanych trwałymi zanieczyszczeniami organicznymi (TZO), (ang. persistent organic pollutants, POPs). Trwałe zanieczyszczenia organiczne są wykrywane w śladowych ilościach prawie we wszystkich przedziałach środowiska globalnego ekosystemu. Około 90% dioksyn dostaje się do organizmu człowieka z pożywieniem. Związki z grupy trwałych zanieczyszczeń organicznych gromadzą się w tkance tłuszczowej, są wolno metabolizowane i szkodliwe, nawet po długim czasie od początkowego narażenia. Dioksyny są związkami, które sukcesywnie i powoli kumulują się w organizmie. Wpływają na wiele reakcji immunologicznych, które przebiegają pod postacią przewlekłych alergii skórnych. Głównym miejscem działania dioksyn są interakcje z gruczołami wydzielania wewnętrznego: tarczycą, gonadami żeńskimi i męskimi, endometrium macicy oraz z nadnerczami, w których są wytwarzane hormony steroidowe. Dioksyny mogą powodować zaburzenia gospodarki hormonalnej organizmu poprzez indukcję receptora węglowodorów aromatycznych (AhR). Mechanizm patogennego oddziaływania TCDD z tkankami i komórkami często nie jest w pełni poznany, jednak na pewno w te mechanizmy jest włączony stres oksydacyjny, a także jakościowe i ilościowe modyfikacje receptorów komórkowych lub białek docelowych czy immunomodulacja. Celem pracy było opracowanie i walidacja czułej metody oznaczania 2,3,7,8-TCDD w środowisku pracy w zakresie 1/10 ÷ 2 wartości najwyższego dopuszczalnego stężenia (NDS). Opracowana metoda polega na: adsorpcji TCDD na piance poliuretanowej, ekstrakcji zatrzymanego związku toluenem i analizie chromatograficznej otrzymanego roztworu przy zastosowaniu wysokorozdzielczego spektrometru mas. Wyznaczony współczynnik desorpcji TCDD z pianki poliuretanowej za pomocą toluenu, wynosi 83,1%. Odpowiedź detektora mas ma charakter liniowy (r = 0,998) w zakresie stężeń 18 ÷ 360 pg/ml, co odpowiada zakresowi 1,8 ÷ 36 mg/m3 (1/10 ÷ 2 wartości NDS) dla próbki powietrza o objętości 10 m3. Granica oznaczalności (LOQ) tej metody wynosi 10,26 pg/ml. Zastosowanie do analizy kolumny DB-5MS pozwala na selektywne oznaczenie TCDD w obecności: toluenu, nonanu oraz innych związków współwystępujących. Opisana metoda analityczna charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania TCDD w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
PCDD are environmental pollutants, called Persistent Organic Pollutants (POPs). Their trace amounts can be found in almost all the spectrum of global ecosystems. Nearly 90% of human exposure to dioxins comes from food. POPs compounds, which gather in fatty tissues, are slowly metabolized and remain harmful even after a relatively long time after exposure. Dioxins enter the human body with food and accumulate in fat-rich tissues. Dioxins gradually and slowly accumulate in the body. They trigger a number of immunological reactions, which take the form of chronic skin allergies. They can disturb the body hormone economy through induction of the aromatic hydrocarbon receptor. The aim of the work was to develop and validate a sensitive method of determining 2,3,7,8-TCDD in the working environment in the range of 1/10–2 MAC values. The developed method consists in adsorption of TCDD on polyurethane foam followed by extraction of the retained compound with toluene and chromatographic analysis using a high-resolution mass spectrometry. The determined TCDD desorption coefficient from polyurethane foam with 20% acetone in toluene is 83.1%. The response of the mass detector is linear (r = 0.998) in the concentration range of 18–360 pg/ml, which corresponds to the range of 1.8–36 mg/m³ (1/10–2 MAC) for an air sample of 10 m³ . The limit of quantification (LOQ) of this method is 10.26 pg/ml. Using a DB-5MS capillary column makes a selective determination of TCDD in the presence of toluene, nonane and other co-existing compounds possible. The developed method is characterized by good precision and accuracy and meets the requirements of European Standard PN-EN 482 for procedures on determining chemical agents. The developed method of determining TCDD has been recorded as an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2019, 3 (101); 139-149
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pentan-1-ol i pozostałe izomery pentanolu : metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej z detekcją płomieniowo-jonizacyjną GC-FID
Pentane-1-ol and its isomers : determination in workplace air with GC with Flame Ionization Detector (GC-FID)
Autorzy:
Zieliński, Marek
Twardowska, Ewa
Kucharska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/138274.pdf
Data publikacji:
2019
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pentanol
alkohol amylowy
metoda oznaczania
metoda chromatografii gazowej
FID
powietrze na stanowiskach pracy
nauki o zdrowiu
inżynieria środowiska
amyl alcohol
determination method
gas chromatography
workplace air
health sciences
environmental engineering
Opis:
Pentan-1-ol (C5H11OH) to organiczny związek chemiczny z grupy nasyconych monohydroksylowych alkoholi alifatycznych. Znanych jest 8 izomerów pentanolu: pentan-1-ol, pentan-2-ol (nr CAS: 6032-29-7), pentan-3-ol (nr CAS: 584-02-1), 2-metylobutan-1-ol (nr CAS: 137-32-6), 3-metylobutan-1-ol (nr CAS: 123-51-3), 2-metylobutan-2-ol (nr CAS: 75-85-4), 3-metylobutan-2-ol (nr CAS: 598-75-4) i 2,2-dimetylopropan-1-ol (nr CAS: 75-84-3). Izomery pentanolu wykazują właściwości chemiczne, które są charakterystyczne dla alkoholi alifatycznych. Są one otrzymywane przez hydratację izomerów pentenu lub hydrolizę chloropentanów. Wykorzystywane są jako rozpuszczalniki: tłuszczów, żywic i wosków. Pentan-1-ol wchłania się do organizmu człowieka poprzez: drogi oddechowe, skórę i przewód pokarmowy. Objawy zatrucia ostrego to najczęściej: łzawienie oczu, zaczerwienienie spojówek, podrażnienie błony śluzowej nosa i gardła. Przy większych stężeniach mogą wystąpić: ból i zawroty głowy, mdłości, wymioty, biegunka, stan pobudzenia (delirium), zaburzenia świadomości, śpiączka. Może również wystąpić arytmia i zaburzenia oddechowe. Skażenie skóry może spowodować jej zaczerwienienie i pieczenie oraz objawy, które występują przy zatruciu drogą inhalacyjną. Skażenie oczu ciekłą substancją wywołuje: ból, pieczenie oczu, zaczerwienienie spojówek, z ryzykiem długotrwałych i trwałych zmian. Wypicie bardzo małej ilości pentanolu może wywoływać: nudności, wymioty oraz biegunkę. Przy powtarzającym się kontakcie ciekłej substancji ze skórą mogą wystąpić jej wysuszenie i stany zapalne, natomiast długotrwałe narażenie skóry na substancję o dużym stężeniu może prowadzić do zmian w układzie nerwowym. Celem pracy było opracowanie i walidacja czułej metody oznaczania 8 izomerów pentanolu w środowisku pracy w zakresie od 1/10 do 2 wartości najwyższego dopuszczalnego stężenia (NDS). Do oznaczenia izomerów pentanolu zastosowano metodę chromatografii gazowej z detekcją płomieniowo-jonizacyjną (GC-FID). Postanowiono opracować metodę zapewniającą oznaczalność na poziomie co najmniej 1/10 NDS. Dalsze rozważania możliwości oznaczania tej substancji w powietrzu oparto na wcześniej opracowanych metodach analitycznych. Zastosowanie kolumny kapilarnej HP-5 umożliwia selektywne oznaczenie pentan-1-olu w obecności: disiarczku węgla, metanolu oraz innych związków współwystępujących. Odpowiedź detektora na analizowane stężenia pentan-1-olu ma charakter liniowy (r2 = 0,9998) w zakresie stężeń 10 ÷ 2 000 μg/ml, co odpowiada zakresowi 1 ÷ 200 mg/m3 (0,01 ÷ 2 wartości NDS) dla próbki powietrza o objętości 10 l. Granica wykrywalności tej metody wynosi 0,026 μg/ml. Opracowana metoda charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowaną metodę oznaczania pentan-1-olu i pozostałych izomerów zapisano w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Amyl alcohol (pentan-1-ol) – C5 H12O or C5 H11OH – is an organic chemical compound from the group of saturated monohydric aliphatic alcohols. There are 8 known isomers of pentanol: pentan-1-ol (CAS:71-41- 0), pentan-2-ol (CAS: 6032-29-7), pentan-3-ol (CAS: 584-02-1), 2-metylobutan-1-ol (CAS: 137-32-6), 3-metylobutan-1-ol (CAS: 123-51-3), 2-metylobutan- 2-ol (CAS: 75-85-4), 3-metylobutan-2-ol (CAS: 598-75-4) i 2,2-dimetylopropan-1-ol (CAS: 75-84- 3). All of them are commonly referred to as amyl alcohols. Pentanol isomers exhibit chemical properties characteristic of aliphatic alcohols, they are obtained by hydration of pentene isomers, hydrolysis of chloropentanes or by reaction of butene and carbon monoxide isomers. They are used as solvents for fats, resins and waxes. Pentan-1-ol is absorbed into the human body through the respiratory tract, skin, gastrointestinal tract. Symptoms of acute intoxication are usually tearing eyes, redness of the conjunctiva, irritation of the mucous membrane of the nose and throat. In higher concentrations it may cause headache, dizziness, nausea, vomiting, diarrhea, delirium, disturbances of consciousness, coma. Arrhythmia and respiratory disorders may cause redness and burning, as well as symptoms such as inhalation poisoning, eye contamination with liquid substance causes pain, burning of the eyes, redness of the conjunctiva, with the risk of long-lasting and permanent changes. Repeated skin contact with the liquid substance may cause its drying and inflammation. It is suggested that long-term exposure of the skin to the substance at high concentration may lead to changes in the nervous system. The aim of this study was to develop and validate a sensitive method of determining 8 pentan-1-ol isomers in the working environment in the range from 1/10 to 2 of the MAC values. The gas chromatography method with a flame ionization detector (GC-FID) was used to determine pentan-1-ol and its isomers. It was decided to develop a method that ensures the determination of at least 1/10 of the MAC values. Further considerations of the possibility of determining this substance in the air are based on previously developed analytical methods. The use of the HP-5 capillary column enables the selective determination of pentan-1-ol in the presence of carbon disulphide, methanol and other co-existing compounds. The detector’s response to the analyzed pentan-1-ol concentrations is linear (r2 = 0.9998) in the concentration range 10–2000 μg/ml, which corresponds to the range of 1–200 mg/m3 (0.01–2 of the MAC values) for a 10-L air sample. The limit of quantification (LOQ) of this method is 0.026 μg/ml. The developed method is characterized by good precision and accuracy and meets the requirements of Standard No. PN-EN 482 for procedures regarding the determination of chemical agents. The developed method for determining pentan-1-ol has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2019, 1 (99); 93-106
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Furan. Metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej
Furan. Determination in workplace air with gas chromatography
Autorzy:
Kucharska, Małgorzata
Pisarska, Anna
Smuga, Jakub
Wesołowski, Wiktor
Powiązania:
https://bibliotekanauki.pl/articles/1845106.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
furan
metoda analityczna
powietrze na stanowiskach pracy
metoda chromatografii gazowej
metoda chromatografii gazowej ze spektrometrią mas
nauki o zdrowiu
inżynieria środowiska
analytical method
workplace air
gas chromatographic method with mass spectrometry
health sciences
environmental engineering
Opis:
Furan jest bezbarwną, bardzo lotną i łatwopalną cieczą o charakterystycznym eterowym zapachu. Występuje naturalnie w niektórych gatunkach drewna, powstaje podczas spalania drewna, tytoniu i paliw, a także obróbki termicznej żywności. W przemyśle furan jest stosowany jako półprodukt w syntezie organicznej, rozpuszczalnik żywic, przy produkcji lakierów, leków, stabilizatorów i insektycydów, a także do produkcji związków chemicznych o strukturze polimerycznej i związków kompleksowych. Działanie rakotwórcze na zwierzęta było podstawą do uznania furanu za substancję o prawdopodobnym działaniu rakotwórczym na ludzi. Celem prac badawczych było opracowanie i walidacja metody oznaczania furanu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania furanu polega na adsorpcji par tej substancji na węglu łupin z orzecha kokosowego, ekstrakcji za pomocą roztworu butan-1-olu w toluenie i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-PONA (o długości 50 m, średnicy 0,2 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 0,05 ÷ 1,0 µg/ml, co odpowiada zakresowi 0,005 ÷ 0,1 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie furanu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania furanu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Furan is colorless, highly volatile and flammable liquid with a specific ether odor. In nature it occurs in some species of wood, it is formed during burning process of wood, tobacco, fuels and also in thermal food processing. In industry furan is used as an intermediate in organic synthesis, resins solvent, during production of lacquer, drugs, stabilizers, insecticides and also in production of chemical compounds which have polymeric and coordination structure. Carcinogenic effect on animals was a base of recognition that furan is a substance which is probably also carcinogenic on humans. The aim of this study was to develop and validate a method of determining furan in workplace air. Developed determination method of furan relies on vapor absorption of this substance on coconut shell charcoal. Furan was extracted by 5% butan-1-ol solution in toluene. Obtained solution was analyzed with chromatography. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with non-polar HP-PONA capillary column (length 50 m, diameter 0.2 mm and the film thickness of the stationary phase 0.5 µm). Developed method is linear in the concentration range of 0.05–1.0 µg/ml, which is equivalent to the range of 0.005–0.1 mg/m³ for 10-L air sample. The analytical method described in this paper makes it possible to determine furan in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method of determining furan in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 2 (108); 139-154
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fosforan trifenylu. Metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej
Triphenyl phosphate. Determination in workplace air with gas chromatography
Autorzy:
Smuga, Jakub
Wesołowski, Wiktor
Kucharska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/23352095.pdf
Data publikacji:
2023
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
fosforan trifenylu
metoda analityczna
powietrze na stanowiskach pracy
metoda chromatografii gazowej ze spektrometrią mas
nauki o zdrowiu
inżynieria środowiska
triphenyl phosphate
analytical method
air at workplaces
gas chromatographic method with mass spectrometry
health sciences
environmental engineering
Opis:
Fosforan trifenylu (FTF) jest bezbarwnym ciałem stałym o delikatnym zapachu przypominającym fenol. Związek jest stosowany jako środek zmniejszający palność przy produkcji elementów elektrycznych i samochodowych oraz jako niepalny plastyfikator używany do produkcji kliszy fotograficznej. Ponadto jest składnikiem płynów hydraulicznych i olejów smarowych, pracujących w warunkach ekstremalnych ciśnień. Fosforan trifenylu jest obecnie stosowany jako zamiennik bisfenolu A w opakowaniach z tworzyw sztucznych i innych, znalazł również zastosowanie w kosmetykach. Celem prac badawczych było opracowanie i walidacja metody oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania fosforanu trifenylu polega na adsorpcji par tej substancji na żywicy XAD-2, desorpcji przy użyciu mieszaniny dichlorometan−acetonitryl (1: 1) i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-5MS (o długości 30 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,25 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia fosforanu trifenylu w badanym zakresie stężeń (10,0 ÷ 200,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie fosforanu trifenylu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Triphenyl phosphate (TPP) is a colorless solid with a slight phenol-like odor. It is used as a flame retardant in the production of electrical and automotive components and as a non-flammable plasticizer used in the production of photographic film. In addition, it is a component of hydraulic fluids and lubricating oils operating under extreme pressure. TPP is currently used as a substitute for Bisphenol A in plastic and other packaging, and has also been used in cosmetics. The aim of the research was to develop and validate method of determination of triphenyl phosphate in workplace air. The developed method of TPP determination consists in adsorption of the vapors of this substance on XAD-2 resin, extraction with a dichloromethane-acetonitrile mixture and chromatographic analysis of the solution obtained in this way. The study was performed by gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a non-polar HP-5MS capillary column (length 30 m, diameter 0.25 mm and the film thickness of the stationary phase 0.25 µm). Indications of the mass spectrometer operating in SIM mode as a function of TPP concentration in the tested concentration range (10.0–200.0 µg/ml) are linear. The analytical method described in this paper enables determination of TPP in air at workplaces in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of triphenyl phosphate at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2023, 2 (116); 145--160
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Metoksypropan-1-ol. Metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej
2-Methoxypropan-1-ol. Determination in workplace air with gas chromatography
Autorzy:
Smuga, Jakub
Pisarska, Anna
Kucharska, Małgorzata
Wesołowski, Wiktor
Powiązania:
https://bibliotekanauki.pl/articles/23352098.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-metoksypropan-1-ol
metoda analityczna
powietrze na stanowiskach pracy
metoda chromatografii gazowej ze spektrometrią mas
nauki o zdrowiu
2-methoxypropan-1-ol
analytical method
air at workplaces
gas chromatographic method with mass spectrometry
health sciences
environmental engineering
Opis:
2-Metoksypropan-1-ol (2M1P) jest bezbarwną, palną cieczą o działaniu drażniącym. Jest to I-rzędowy alkohol powstający jako produkt uboczny przy produkcji eteru monometylowego glikolu propylenowego (1-metoksypropan-2-olu). W związku z tym narażenie na 2M1P zawsze wiąże się z narażeniem na 1-metoksypropan-2-ol, który jest stosowany jako rozpuszczalnik farb, lakierów, barwników itp. oraz jako składnik preparatów czyszczących i półprodukt do syntezy chemicznej. W środowisku pracy pracownicy mogą być narażeni na działanie 2-metoksypropan-1-olu drogą inhalacyjną i dermalną. Celem prac badawczych było opracowanie i walidacja metody oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania 2M1P polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji przy użyciu roztworu metanolu w disiarczku węgla i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 10,0 ÷ 400,0 µg/ml, co odpowiada zakresowi 1,0 ÷ 40,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 1 (111); 147--162
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1-Metylo-2-pirolidon. Metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej
1-Methyl-2-pyrrolidone. Determination in workplace air with gas chromatography
Autorzy:
Kucharska, Małgorzata
Smuga, Jakub
Pisarska, Anna
Wesołowski, Wiktor
Powiązania:
https://bibliotekanauki.pl/articles/23352046.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1-metylo-2-pirolidon
metoda analityczna
powietrze na stanowiskach pracy
metoda chromatografii gazowej ze spektrometrią mas
nauki o zdrowiu
inżynieria środowiska
1-methyl-2-pyrrolidone
analytical method
air at workplaces
gas chromatographic method with mass spectrometry
health sciences
environmental engineering
Opis:
1-Metylo-2-pirolidon (NMP) jest higroskopijną cieczą o lekko aminowym (rybnym) zapachu, pochodną γ-laktamu. NMP znalazł zastosowanie w przemyśle chemicznym jako polarny rozpuszczalnik do ekstrakcji, do mycia i odłuszczania części metalowych, do usuwania pozostałości żywic z części elektronicznych oraz starych powłok malarskich. Główną drogą narażenia na NMP w środowisku pracy jest droga inhalacyjna oraz kontakt przez skórę. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NMP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 40,0 ÷ 800,0 µg/ml, co odpowiada zakresowi 4,0 ÷ 80,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
1-Methyl-2-pyrrolidone (NMP) is a hygroscopic liquid with a slightly amine (fishy) odor, a derivative of γ-lactam. NMP has been used in the chemical industry as a polar solvent for extraction, washing and degreasing metal parts, removing residual resins from electronic parts, removing old paint coatings. The main route of exposure to NMP in workplace air is the inhalation route and skin contact. The aim of this study was to develop and validate a method for determining 1-methyl-2-pyrrolidone in workplace air. The developed method of NMP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the solution obtained in this way. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 40.0–800.0 µg/ml, which corresponds to the range of 4.0–80.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-methyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determining chemical agents listed in Standard No. PN-EN 482. The developed method for determining 1-methyl-2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 2 (112); 127--142
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1-Etylo-2-pirolidon. Metoda oznaczania w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej
1-Ethyl-2-pyrrolidone. Determination in workplace air with gas chromatography
Autorzy:
Pisarska, Anna
Kucharska, Małgorzata
Smuga, Jakub
Wesołowski, Wiktor
Powiązania:
https://bibliotekanauki.pl/articles/23352044.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1-etylo-2-pirolidon
metoda analityczna
powietrze na stanowiskach pracy
metoda chromatografii gazowej ze spektrometrią mas
nauki o zdrowiu
inżynieria środowiska
1-ethyl-2-pyrrolidone
analytical method
air at workplaces
gas chromatographic method with mass spectrometry
health sciences
environmental engineering
Opis:
1-Etylo-2-pirolidon (NEP) jest bezbarwną cieczą o zapachu zbliżonym do amoniaku. Należy do związków organicznych z grupy laktamów, czyli jest etylową pochodną 2-pirolidonu. 1-Etylo-2-pirolidon ze względu na podobne właściwości fizykochemiczne stosowany jest w przemyśle jako zamiennik 1-metylo-2-pirolidonu (NMP). Używany jest jako rozpuszczalnik w przemyśle polimerowym, petrochemicznym, farb i lakierów, elektronicznym. Ponadto znalazł zastosowanie jako środek czyszczący do usuwania farb, lakierów, klejów, oleju czy smarów. 1-Etylo-2-pirolidon może wchłaniać się przez skórę, a także drogą inhalacyjną i pokarmową. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NEP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 15,0 ÷ 320,0 µg/ml, co odpowiada zakresowi 1,5 ÷ 32,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
-Ethyl-2-pyrrolidone (NEP) is a colorless liquid with ammonia-like odor. It belongs to the organic compounds from the lactam group, i.e., the ethyl derivative of 2-pyrrolidone. 1-Ethyl-2-pyrrolidone, due to similar physicochemical properties, is used in industry as a substitute for 1-methyl-2-pyrrolidone (NMP). It is used as a solvent in polymer, petrochemical, paint and varnish, and electronic industries. Moreover, it has been used as a cleaning agent for removing paints, varnishes, adhesives, oil or grease. 1-Ethyl-2-pyrrolidone can be absorbed through the skin as well as through inhalation and food. The aim of the this study was to develop and validate a method for determining 1-ethyl-2-pyrrolidone in workplace air. The developed method of NEP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the obtained solution. The study was performed using a gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 15.0–320.0 µg/ml, which corresponds to the range of 1.5–32.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-ethyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for measuring chemical agents listed in Standard No. PN-EN 482. Developed method of determining 1-ethyl2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 2 (112); 111--126
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies