Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "RFSSW" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Experimental and Numerical Stress State Assesment in Refill Friction Stir Spot Welding Joints
Autorzy:
Gadalińska, Elżbieta
Kubit, Andrzej
Trzepieciński, Tomasz
Moneta, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/2105194.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
RFSSW
X-ray diffraction
finite elements modelling
stress state
aluminium alloys
Opis:
Refill Friction Stir Spot Welding (RFSSW) is a technology used for joining solid materials that was developed in Germany in 2002 by GKSS-GmbH as a variant of the conventional friction stir spot welding (FSSW) [1]. In the RFSSW technology, the welding tool consists of a fixed outer part and rotating inner parts, which are called a pin and a sleeve. The tool for RFSSW is designed to plasticize the material of the parts to be joined by means of a rotary movement. The design of the tool allows independent vertical movement of both elements of the welding tool. This allows obtaining spot welds without creating holes that could weaken the structure. The main advantage of RFSSW is the potential for replacing the technologies that add weight to the structure or create discontinuities, such as joining with screws or rivets. Thus, RFSSW has great potential in the automotive, shipbuilding and aviation industries. Furthermore, the technology can be used to join different materials that could not be connected using other joining methods. The main objective of this work is to understand the physical and mechanical aspects of the RFSSW method - including the residual stress state inside the weld and around the joint. The results of the investigations can help to determine optimal parameters that could increase the strength and fatigue performance of the joint and to prove the significant advantage of RFSSW connections over other types of joints. The work assumes the correlation of two mutually complementary investigation methods: numerical analyses and experimental studies carried out with diffraction methods. The comparison between numerical and experimental results makes potentially possible the determination of degree of fatigue degradation of the material by observing the macroscopic stress state and the broadening of the diffraction peak width (FWHM), which is an indicator of the existence of micro-stress related to the dislocation density and grain size.
Źródło:
Fatigue of Aircraft Structures; 2021, 13; 54--71
2081-7738
2300-7591
Pojawia się w:
Fatigue of Aircraft Structures
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Research of the Weakening of the Fuselage Skin by RFSSW Single Row Joints
Autorzy:
Kubit, Andrzej
Bucior, Magdalena
Kluz, Rafał
Bochnowski, Wojciech
Perłowski, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/102400.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
RFSSW
welding
thin-walled structures
pressurization
microstructure analysis
spawanie
struktury cienkościenne
zwiększanie ciśnienia
analiza mikrostruktury
Opis:
The paper presents the results of experimental investigations, the aim of which was to determine the degree of weakening of skin sheet of the thin-walled structure through a single-row welded joints made by Refill Friction Stir Spot Welding (RFSSW) technology. At the beginning, a short metallographic analysis of the weld was carried out, defining the characteristic areas of the microstructure. Then, comparative tests were carried out on the thin-walled structure sample in the form of a single-row skin-stringer joint. The structures made with the discussed technology of welding were compared with the traditionally joined structure by riveting. It has been shown that in the case of the welded structure, the skin sheet is weakened by more than 6% to a lesser extent than in the case of riveted. However, it was shown that the cracking path in the tensiled welded sheet runs along an unpredictable path, deviating from the line marked by the welds’ row. While in the case of riveted joint the cracking propagation along the row of rivets was revealed. The analyzes of fracture surfaces for both cases using scanning electron microscopy were also undertaken, thus undertaking preliminary considerations on the mechanism of fracture.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 3; 90-97
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies