Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wielowymiarowe dane" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Ocena zróżnicowania poziomu życia mieszkańców województw w latach 2003–2013 za pomocą składowych głównych dla wielowymiarowych danych funkcjonalnych oraz analizy skupień
Estimation of Diversity of Living Standards in Polish Voivodships in 2003–2013 Using Principal Components for Multidimensional Functional Data and Cluster Analysis
Autorzy:
Krzyśko, Mirosław
Majka, Agnieszka
Wołyński, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1050488.pdf
Data publikacji:
2016-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
wielowymiarowe dane funkcjonalne
funkcjonalna analiza danych
analiza składowych głównych
multivariate functional data
functional data analysis
principal components analysis
Opis:
W artykule przedstawiono ocenę zróżnicowania poziomu życia mieszkańców województw w latach 2003–2013. Do oceny zastosowano analizę składowych głównych dla wielowymiarowych danych funkcjonalnych oraz dendrytową analizę skupień. Metody te pozwoliły na wyodrębnienie względnie jednorodnych grup województw o zbliżonym poziomie rozpatrywanych cech dla całego rozpatrywanego okresu łącznie.
The paper presents an estimation of life standard diversity for residents of Polish voivodships in 2003–2013. The principal component analysis was applied for multidimensional functional data and the dendrite method was used for cluster analysis. These methods made it possible to isolate relatively homogeneous groups of voivodships that had similar values of characteristics under consideration, for the whole period at issue.
Źródło:
Przegląd Statystyczny; 2016, 63, 1; 81-98
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected Robust Logistic Regression Specification for Classification of Multi‑dimensional Functional Data in Presence of Outlier
Zastosowanie odpornej regresji logistycznej do klasyfikacji wielowymiarowych danych funkcjonalnych
Autorzy:
Krzyśko, Mirosław
Smaga, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/657746.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza regresji dla danych funkcjonalnych
estymacja odporna
model regresji logistycznej
rozwinięcie funkcji w bazie funkcyjnej
wielowymiarowe dane funkcjonalne
zagadnienie klasyfikacji
basis functions representation
classification problem
functional regression analysis
logistic regression model
multi‑dimensional functional data
robust estimation
Opis:
W niniejszym artykule rozważany jest problem dwuetykietowej klasyfikacji wielowymiarowych danych funkcjonalnych. Zaproponowane rozwiązanie tego problemu oparto na technikach regresyjnych i modelu regresji logistycznej dla danych funkcjonalnych. Model ten został przekształcony do szczególnego modelu regresji logistycznej za pomocą rozwinięcia (będących funkcjami) współczynników regresji i zmiennych objaśniających w bazie funkcyjnej. Na podstawie tego modelu skonstruowana została reguła klasyfikacyjna. W przypadku występowania obserwacji odstających rozważane są również metody odpornej estymacji nieznanych parametrów. Eksperymenty numeryczne sugerują, że proponowane metody mogą z powodzeniem być wykorzystane w praktycznych zagadnieniach.
In this paper, the binary classification problem of multi‑dimensional functional data is considered. To solve this problem a regression technique based on functional logistic regression model is used. This model is re‑expressed as a particular logistic regression model by using the basis expansions of functional coefficients and explanatory variables. Based on re‑expressed model, a classification rule is proposed. To handle with outlying observations, robust methods of estimation of unknown parameters are also considered. Numerical experiments suggest that the proposed methods may behave satisfactory in practice.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 2, 334
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies