Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Deep learning" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2128158.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136751, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of bone structures with the use of deep learning techniques
Autorzy:
Krawczyk, Zuzanna
Starzyński, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2173574.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
semantic segmentation
U-net
FCN
ResNet
computed tomography
technika deep learning
głęboka nauka
segmentacja semantyczna
tomografia komputerowa
Opis:
The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136751
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning-based framework for tumour detection and semantic segmentation
Autorzy:
Kot, Estera
Krawczyk, Zuzanna
Siwek, Krzysztof
Królicki, Leszek
Czwarnowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2128156.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
medical imaging
tumour detection
semantic segmentation
image fusion
technika deep learning
głęboka nauka
obrazowanie medyczne
wykrywanie guza
segmentacja semantyczna
połączenie obrazu
Opis:
For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) scans are the core methods in software and advanced screening utilized by radiologists. In this paper, a universal and complex framework for two parts of the dose control process – tumours detection and tumours area segmentation from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examinations results. Mask R-CNN (region-based convolutional neural network) was used for tumour detection – output of the model is bounding box coordinates for each object in the image – tumour. U-Net was used to perform semantic segmentation – segment malignant cells and tumour area. Transfer learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use-cases that combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136750, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning-based framework for tumour detection and semantic segmentation
Autorzy:
Kot, Estera
Krawczyk, Zuzanna
Siwek, Krzysztof
Królicki, Leszek
Czwarnowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2173573.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
medical imaging
tumour detection
semantic segmentation
image fusion
technika deep learning
głęboka nauka
obrazowanie medyczne
wykrywanie guza
segmentacja semantyczna
połączenie obrazu
Opis:
For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) scans are the core methods in software and advanced screening utilized by radiologists. In this paper, a universal and complex framework for two parts of the dose control process – tumours detection and tumours area segmentation from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examinations results. Mask R-CNN (region-based convolutional neural network) was used for tumour detection – output of the model is bounding box coordinates for each object in the image – tumour. U-Net was used to perform semantic segmentation – segment malignant cells and tumour area. Transfer learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use-cases that combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136750
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies