Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Logistic Regression" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Assessment model of cutting tool condition for real-time supervision system
Model oceny stanu narzędzia skrawającego dla systemu nadzoru w czasie rzeczywistym
Autorzy:
Kozłowski, Edward
Mazurkiewicz, Dariusz
Żabiński, Tomasz
Prucnal, Sławomir
Sęp, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/301525.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
predictive maintenance
logistic regression
elasticnet
maximum likelihood method
ROC
AUC
predykcyjne utrzymanie ruchu
regresja logistyczna
metoda największej wiarygodności
Opis:
Further development of manufacturing technology, in particular machining requires the search for new innovative technological solutions. This applies in particular to the advanced processing of measurement data from diagnostic and monitoring systems. The increasing amount of data collected by the embedded measurement systems requires development of effective analytical tools to efficiently transform the data into knowledge and implement autonomous machine tools of the future. This issue is of particular importance to assess the condition of the tool and predict its durability, which are crucial for reliability and quality of the manufacturing process. Therefore, a mathematical model was developed to enable effective, real-time classification of the cutting blade status. The model was verified based on real measurement data from an industrial machine tool.
Dalszy rozwój inżynierii produkcji, w szczególności obróbki skrawaniem, wymaga poszukiwania nowych innowacyjnych rozwiązań technologicznych. Dotyczy to w szczególności zaawansowanego przetwarzania danych pomiarowych pochodzących z systemów diagnostycznych i monitorujących. Rosnąca ilość danych gromadzonych przez wbudowane systemy pomiarowe wymaga opracowania skutecznych narzędzi analitycznych, aby efektywnie przekształcać dane w wiedzę i wdrażać autonomiczne obrabiarki przyszłości. Kwestia ta ma szczególne znaczenie dla oceny stanu narzędzia i przewidywania jego trwałości, które są kluczowe dla niezawodności i jakości procesu produkcyjnego. Dlatego opracowano nowy model matematyczny, którego zadaniem jest skuteczna klasyfikacja stanu ostrza narzędzia skrawającego realizowana w czasie rzeczywistym. Opracowany model został zweryfikowany na podstawie rzeczywistych danych pomiarowych z przemysłowej obrabiarki.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 4; 679-685
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the logistic regression for determining transition probability matrix of operating states in the transport systems
Zastosowanie regresji logistycznej do wyznaczania macierzy prawdopodobieństw przejść stanów eksploatacyjnych w systemach transportowych
Autorzy:
Kozłowski, Edward
Borucka, Anna
Świderski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/301531.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
logistic regression
transition probability matrix
Markov chains
transport system
regresja logistyczna
macierz prawdopodobieństw przejść
łańcuchy Markowa
system transportowy
Opis:
Transport companies can be regarded as a technical, organizational, economic and legal transport system. Maintaining the quality and continuity of the implementation of transport requisitions requires a high level of readiness of vehicles and staff (especially drivers). Managing and controlling the tasks being implemented is supported by mathematical models enabling to assess and determine the strategy regarding the actions undertaken. The support for managing processes relies mainly on the analysis of sequences of the subsequent activities (states). In many cases, this sequence of activities is modelled using stochastic processes that satisfy Markov property. Their classic application is only possible if the conditional probability distributions of future states are determined solely by the current operational state. The identification of such a stochastic process relies mainly on determining the probability matrix of interstate transitions. Unfortunately, in many cases the analyzed series of activities do not satisfy Markov property. In addition, the occurrence of the next state is affected by the length of time the system remains in the specified operating state. The article presents the method of constructing the matrix of probabilities of transitions between operational states. The values of this matrix depend on the time the object remains in the given state. The aim of the article was to present an alternative method of estimating the parameters of this matrix in a situation where the studied series does not satisfy Markov property. The logistic regression was used for this purpose.
Przedsiębiorstwa transportowe mogą być traktowane jako wyodrębniony pod względem technicznym, organizacyjnym, ekonomicznym i prawnym system transportowy. Zachowanie jakości i ciągłości realizacji zleceń przewozowych wymaga wysokiego poziomu gotowości pojazdów oraz personelu (szczególnie kierowców). Kontrolowanie i sterowanie realizowanymi zadaniami wspierane jest modelami matematycznymi, umożliwiającymi ocenę i określenie strategii dotyczącej podejmowanych działań. Wsparcie procesów zarządzania polega głównie na analizie sekwencji kolejnych, realizowanych czynności (stanów). W wielu przypadkach taki ciąg czynności jest modelowany za pomocą procesów stochastycznych, spełniających własność Markowa. Ich klasyczne zastosowanie możliwe jest tylko w przypadku, gdy warunkowe rozkłady prawdopodobieństwa przyszłych stanów są określone wyłącznie przez bieżący stan eksploatacyjny. Identyfikacja takiego procesu stochastycznego polega głównie na wyznaczeniu macierzy prawdopodobieństw przejść międzystanowych. Niestety w wielu przypadkach analizowane ciągi czynności nie spełniają własności Markowa. Dodatkowo, na wystąpienie kolejnego stanu wpływa długość interwału czasowego pozostania systemu w określonym stanie eksploatacyjnym. W artykule przedstawiono metodę konstrukcji macierzy prawdopodobieństw przejść pomiędzy stanami eksploatacyjnymi. Wartości tej macierzy zależą od czasu przebywania obiektu w danym stanie. Celem artykułu było zaprezentowanie alternatywnej metody estymacji parametrów tej macierzy w sytuacji, gdy badany szereg nie spełnia własności Markowa. Wykorzystano w tym celu regresję logistyczną.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 2; 192-200
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies