Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "breast cancer" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Feature selection for breast cancer malignancy classification problem
Autorzy:
Filipczuk, P.
Kowal, M.
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/333614.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wybór funkcji
klasyfikacja
rak piersi
feature selection
classification
breast cancer
Opis:
The paper provides a preview of some work in progress on the computer system to support breast cancer diagnosis. Diagnosis approach is based on microscope images of the FNB (Fine Needle Biopsy) and assumes distinguishing malignant from benign cases. Studies conducted focus on two different problems, the first concern the extraction of morphometric parameters of nuclei present in cytological images and the other concentrate on breast cancer nature classification using selected features. Studies in both areas are conducted in parallel. This work is devoted to the problem of feature selection from the set of determined features in order to maximize the accuracy of classification. Morphometric features are derived directly from a digital scans of breast fine needle biopsy slides and are computed for segmented nuclei. The quality of feature space is measured with four different classification methods. In order to illustrate the effectiveness of the approach, the automatic system of malignancy classification was applied on a set of medical images with promising results.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 193-199
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computer-aided diagnosis of breast cancer using gaussian mixture cytological image segmentation
Autorzy:
Kowal, M.
Filipczuk, P.
Obuchowicz, A.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/333385.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
segmentacja obrazu
klasyfikacja
rak piersi
image segmentation
classification
breast cancer
Opis:
This paper presents an automatic computer system to breast cancer diagnosis. System was designed to distinguish benign from malignant tumors based on fine needle biopsy microscope images. Studies conducted focus on two different problems, the first concern the extraction of morphometric and colorimetric parameters of nuclei from cytological images and the other concentrate on breast cancer classification. In order to extract the nuclei features, segmentation procedure that integrates results of adaptive thresholding and Gaussian mixture clustering was implemented. Next, tumors were classified using four different classification methods: k–nearest neighbors, naive Bayes, decision trees and classifiers ensemble. Diagnostic accuracy obtained for conducted experiments varies according to different classification methods and fluctuates up to 98% for quasi optimal subset of features. All computational experiments were carried out using microscope images collected from 25 benign and 25 malignant lesions cases.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 257-262
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding
Hybrydowa metoda segmentacji obrazów cytologicznych oparta o konkurencyjne sieci neuronowe i adaptacyjne progowanie
Autorzy:
Kowal, M.
Filipczuk, P.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/153798.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
segmentacja obrazu
sieci neuronowe
rak piersi
diagnostyka
image segmentation
neural networks
breast cancer
diagnosis
Opis:
The paper provides a preview of research on the computer system to support breast cancer diagnosis. The approach is based on analysis of microscope images of fine needle biopsy material. The article is devoted mainly to the segmentation problem. Hybrid segmentation algorithm based on competitive learning neural network and adaptive thresholding is presented. The system was tested on a set of real case medical images obtained from patients of the hospital in Zielona Góra with promising results.
Niniejszy artukuł przedstawia wyniki prac badawczych prowadzonych nad komputerowym systemem wspierającym diagnostykę raka piersi. Zaprezentowane podejscie oparte jest na analizie mikroskopowych obrazów materiału pozyskanego metodą biopsji cienkoigłowej bez aspiracji. Zadaniem systemu jest określenie czy badany przypadek jest zmianą łagodną czy złośliwą. Badania skupione są na dwóch głównych problemach. Pierwszym z nich jest segmentacja obrazów cytologicznych oraz ekstrakcja cech morfometrycznych jąder komórkowych występujących na rozmazach. Drugim problemem jest klasyfikacja raka sutka oraz odpowiedni dobór cech najlepiej opisujących daną klasę. W artykule autorzy położyli główny nacisk na opisie sposobu segmentacji obrazów. Poprawność procesu segmentacji w dużym stopniu decyduje o możliwości wykonania skutecznych pomiarów cech morfometrycznych jąder komórkowych i w konsekwencji dokonania właściwej diagnozy. W artykule przedstawiono hybrydowy algorytm segmentacji oparty o konkurencyjne sieci neuronowe i adaptacyjne progowanie. Jest to metoda alternatywna do zaprezentowanej wcześniej metody bazującej na rozmytym algorytmie c-średnich. Porównanie wyników obydwu metod zamieszczono w artykule. Automatyczny system wspierający diagnostykę raka piersi przetestowano na prawdziwych obrazach medycznych pacjentów regionalnego szpitala w Zielonej Górze. W przeprowadzonych eksperymetach uzyskano obiecujące wyniki.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 11, 11; 1448-1451
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nuclei segmentation for computer-aided diagnosis of breast cancer
Autorzy:
Kowal, M.
Filipczuk, P.
Powiązania:
https://bibliotekanauki.pl/articles/330248.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
computer aided diagnosis
breast cancer
pattern analysis
fast marching
diagnostyka wspomagana komputerowo
rak piersi
analiza obrazu
Opis:
Breast cancer is the most common cancer among women. The effectiveness of treatment depends on early detection of the disease. Computer-aided diagnosis plays an increasingly important role in this field. Particularly, digital pathology has recently become of interest to a growing number of scientists. This work reports on advances in computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. The task at hand is to classify those as either benign or malignant. We propose a robust segmentation procedure giving satisfactory nuclei separation even when they are densely clustered in the image. Firstly, we determine centers of the nuclei using conditional erosion. The erosion is performed on a binary mask obtained with the use of adaptive thresholding in grayscale and clustering in a color space. Then, we use the multi-label fast marching algorithm initialized with the centers to obtain the final segmentation. A set of 84 features extracted from the nuclei is used in the classification by three different classifiers. The approach was tested on 450 microscopic images of fine needle biopsies obtained from patients of the Regional Hospital in Zielona Góra, Poland. The classification accuracy presented in this paper reaches 100%, which shows that a medical decision support system based on our method would provide accurate diagnostic information.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 19-31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The feature selection problem in computer-assisted cytology
Autorzy:
Kowal, M.
Skobel, M.
Nowicki, N.
Powiązania:
https://bibliotekanauki.pl/articles/329941.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
nuclei segmentation
feature selection
breast cancer
convolutional neural network
segmentacja jądra
selekcja cech
rak piersi
sieć neuronowa konwolucyjna
Opis:
Modern cancer diagnostics is based heavily on cytological examinations. Unfortunately, visual inspection of cytological preparations under the microscope is a tedious and time-consuming process. Moreover, intra- and inter-observer variations in cytological diagnosis are substantial. Cytological diagnostics can be facilitated and objectified by using automatic image analysis and machine learning methods. Computerized systems usually preprocess cytological images, segment and detect nuclei, extract and select features, and finally classify the sample. In spite of the fact that a lot of different computerized methods and systems have already been proposed for cytology, they are still not routinely used because there is a need for improvement in their accuracy. This contribution focuses on computerized breast cancer classification. The task at hand is to classify cellular samples coming from fine-needle biopsy as either benign or malignant. For this purpose, we compare 5 methods of nuclei segmentation and detection, 4 methods of feature selection and 4 methods of classification. Nuclei detection and segmentation methods are compared with respect to recall and the F1 score based on the Jaccard index. Feature selection and classification methods are compared with respect to classification accuracy. Nevertheless, the main contribution of our study is to determine which features of nuclei indicate reliably the type of cancer. We also check whether the quality of nuclei segmentation/detection significantly affects the accuracy of cancer classification. It is verified using the test set that the average accuracy of cancer classification is around 76%. Spearman’s correlation and chi-square test allow us to determine significantly better features than the feature forward selection method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 759-770
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies