Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A proposal of a new method of choosing starting points for k-means grouping
Propozycja nowej metody wyboru punktów startowych do grupowania metodą k-średnich
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/907035.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
cluster analysis
starting points
silhouette indices
k-means method
Opis:
When one groups set elements with the help of k-means it is crucial to choose starting points properly. If they are chosen incorrectly one may arrive at badly grouped elements. In the paper a new method of choosing starting points is proposed. It is based on the distance matrix only. Starting points are chosen so as to improve the classical method of choosing points which are as far from one another as possible. The quality of grouping is assessed by means of silhouette indices — it is compared with the quality of grouping done with randomly chosen starting points and with maximum distance interval method. Sets from Euclidean spaces are generated with the help of CLUSTGEN software written by J. Milligana.
Gdy grupujemy punkty zbioru metodą k-średnich to zasadniczym problemem jest właściwy wybór punktów startowych. Jeśli są one źle wybrane to grupowanie może być złe. W artykule zaproponowana jest nowa metoda wyboru punktów startowych. Metoda ta jest oparta wyłącznie na znajomości macierzy odległości. Punkty startowe są wybierane tak, by poprawić wybór, który otrzymamy przy pomocy metody klasycznej polegającej na wyborze punktów możliwie jak najbardziej od siebie oddalonych. Jakość grupowania jest oceniana przy pomocy indeksów sylwetkowych - porównywana jest z jakością grupowania otrzymanego przy losowym wyborze punktów startowych oraz przy wyborze metodą klasyczną. Zbiory z przestrzeni euklidesowych są generowane przy pomocy programu CLUSTGEN autorstwa J. Milligana.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2008, 216
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Method of Variable Selection for Binary Data Cluster Analysis
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/466036.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
cluster analysis
market segmentation
selection of variables
binary data
k-means grouping
Opis:
Cluster analysis of binary data is a relatively poorly developed task in comparison with cluster analysis for data measured on stronger scales. For example, at the stage of variable selection one can use many methods arranged for arbitrary measurement scales but the results are usually of poor quality. In practice, the only methods dedicated for variable selection for binary data are the ones proposed by Brusco (2004), Dash et al. (2000) and Talavera (2000). In this paper the efficiency of these methods will be discussed with reference to the marketing type data of Dimitriadou et al. (2002). Moreover, the primary objective is a new proposal of variable selection method based on connecting the filtering of the input set of all variables with grouping of sets of variables similar with respect to similar groupings of objects. The new method is an attempt to link good features of two entirely different approaches to variable selection in cluster analysis, i.e. filtering methods and wrapper methods. The new method of variable selection returns best results when the classical k-means method of objects grouping is slightly modified.
Źródło:
Statistics in Transition new series; 2016, 17, 2; 295-304
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies