Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rak, J. R." wg kryterium: Autor


Wyświetlanie 1-8 z 8
Tytuł:
Wykorzystanie potencjałów mózgowych P300 do sterowania awatarem
Implementation of P300 potentials for controlling an avatar
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/154837.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
BCI
interfejs mózg-komputer
sygnały EEG
potencjał P300
awatar
brain-computer interface
EEG
P300 potential
avatar
Opis:
W artykule przedstawiono system BCI umożliwiający sterowanie awatarem w wirtualnym świecie gry Second Life z wykorzystaniem potencjału mózgowego P300. Do budowy systemu autorzy wykorzystali ogólnodostępne oprogramowanie BCI2000 oraz własne oprogramowanie umożliwiające sterowanie zewnętrzną aplikacją poprzez symulację naciśnięć przycisków klawiatury. Użytkownik w komfortowy sposób może sterować kierunkiem ruchu awatara. System jest uniwersalny i po drobnych modyfikacjach pozwala na sterowanie dowolnym urządzeniem. Docelowo autorzy chcą wykorzystać autorskie oprogramowanie do sterowania kierunkiem ruchu wózka inwalidzkiego.
In the paper there is presented a BCI system which enables control of avatar movement in the virtual world of the Second Life game. The system consists of two PCs connected via LAN. On the first computer the BCI200 system was launched with a modified Dochin board (Fig. 5). The interface enables choosing the direction of avatar movement (forward, backward, right, left). Next, the BCI2000 system sends the information about the avatar movement direction via UDP / IP protocol to the second computer. On that computer a program created by the authors is running. Its task is to receive information about the movement direction, and then to send the appropriate commands, in the form of simulated keystrokes, to the game. The program was written in C # (Visual Studio 2005). An important advantage of the proposed interface is that a user does not have to learn the proper generation of the EEG signal. With only one calibration session it was possible to collect features of P300 potential for a user and correctly train the classifier. The system is universal and after minor modifications can control any device. Ultimately, the authors want to use the software to control the direction of wheelchair movement.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 4, 4; 352-354
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów wspierających (SVM) do klasyfikacji sygnału EEG na użytek interfejsu mózg-komputer
Implementation of support vector machine for classification of EEG signal for brain-computer interface
Autorzy:
Kołodziej, M.
Majkowski, A.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/155968.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
BCI
interfejs mózg-komputer
EEG
maszyna wektorów wspierających
SVM
brain-computer interface
support vector machine
Opis:
W artykule przedstawiono wykorzystanie maszyny wektorów wspierających (SVM) na użytek interfejsów mózg-komputer (BCI). W opracowanych algorytmach jako cechy sygnału EEG wykorzystano jego wariancję. Przedstawiono wyniki badań związanych z wykorzystaniem sieci SVM jako klasyfikatora. Eksperymenty przeprowadzono przy użyciu różnego rodzaju funkcji jądra.
Implementing communication between man and machine by use of EEG signals is one of the biggest challenges in the signal theory. Such communication could improve the standard of living of people with severe motor disabilities. Some disable persons cannot move, however they can think about moving their arms, legs and this way produce stable motor-related EEG signals. These signals can be used to construct BCI systems. However, the proper interpretation of the EEG signals is a very difficult task. There are three main stages in EEG signal analysis: feature extraction, feature selection and classification. The main aim of the paper is to implement a support vector machine as a classifier for the brain-computer interface. The proposed algorithm uses the EEG signal variance in the frequency range 8-30Hz. Experiments were conducted with use of different kernel functions for the SVM classifier. The best results were achieved for the quadratic polynomial kernel function. The classification error for testing data was 0.13.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 12, 12; 1546-1548
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint time-frequency and wavelet analysis - an introduction
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/220841.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
frequency analysis
time-frequency analysis
short-time Fourier transform
Gabor transform
Wigner-Ville transform
Cone-Shaped Transform
wavelet analysis
time-scale analysis
wavelet decomposition
filter banks
wavelet packets
Opis:
A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f) algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency). The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
Źródło:
Metrology and Measurement Systems; 2014, 21, 4; 741-758
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain-computer interface as measurement and control system The review paper
Autorzy:
Rak, R. J.
Kołodziej, M.
Majkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/221747.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
EEG
brain-computer interface
feature extraction
feature selection
measurement and control
Opis:
In the last decade of the XX-th century, several academic centers have launched intensive research programs on the brain-computer interface (BCI). The current state of research allows to use certain properties of electromagnetic waves (brain activity) produced by brain neurons, measured using electroencephalographic techniques (EEG recording involves reading from electrodes attached to the scalp - the non-invasive method - or with electrodes implanted directly into the cerebral cortex - the invasive method). A BCI system reads the user's "intentions" by decoding certain features of the EEG signal. Those features are then classified and "translated" (on-line) into commands used to control a computer, prosthesis, wheelchair or other device. In this article, the authors try to show that the BCI is a typical example of a measurement and control unit.
Źródło:
Metrology and Measurement Systems; 2012, 19, 3; 427-444
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przetwarzanie wstępne i analiza obrazu na użytek lokalizacji twarzy
Automatic face detection method
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Nasternak, M
Powiązania:
https://bibliotekanauki.pl/articles/152848.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
przetwarzanie obrazów
klasyfikacja
face detection
image processing
classification
Opis:
W artykule zaprezentowany jest algorytm automatycznej detekcji twarzy w obrazie statycznym. Detektor ma osiągać najwyższą skuteczność przy znajdowaniu twarzy możliwie niepochylonych i patrzących na wprost kamery. Wielkość wykrywanych twarzy musi być (z pewnymi odchyleniami) zgodna z rozmiarem twarzy zawartych na obrazach zastosowanych do uczenia klasyfikatora. Obrazy wejściowe mogą być kolorowe lub czarno-białe. Nie ma limitu co do liczby twarzy znajdujących się na obrazie.
The aim of this work is to design and implement a face detection algorithm in static images. The detector have to achieve the best results in finding possible not inclined faces of people looking directly at the camera. The authors have proposed an algorithm which operation is based on the appearance (features) of the face. Block diagram of the proposed face detector is given in Fig. 1. In the first stage, the image containing the face is subjected to preprocessing in which normalization is the most important. Normalization aims to unify a variety of analyzed images. We have used here a conversion of colors to gray levels and stretching and equalization of image histogram. Thus prepared image is processed by the appropriate face detection algorithm, which consists of pre-selection and classification. In order to train the classifier the authors created a database of images consisting of two major categories: containing faces and do not contain faces. As a collection of images that include faces there have been used Olivetti DB ORL database [1]. Final processing step is to get rid of the multiple detection of the same faces. As a result of the algorithm we obtain the location of all faces in the input image (Fig. 4). The size of detected faces should be (with some variations) in accordance with the size of images used to train the classifier. Input images can be color or black and white. There is no limit to the number of faces in an image.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 3, 3; 132-135
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Electrodermal activity measurements for detection of emotional arousal
Autorzy:
Kołodziej, M.
Tarnowski, P.
Majkowski, A.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/200323.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electrodermal activity
EDA
galvanic skin response
GSR
skin conductance response
SCR
feature selection
arousal
valence
classification
regression
Opis:
In this article, we present a comprehensive measurement system to determine the level of user emotional arousal by the analysis of electrodermal activity (EDA). A number of EDA measurements were collected, while emotions were elicited using specially selected movie sequences. Data collected from 16 participants of the experiment, in conjunction with those from personal questionnaires, were used to determine a large number of 20 features of the EDA, to assess the emotional state of a user. Feature selection was performed using signal processing and analysis methods, while considering user declarations. The suitability of the designed system for detecting the level of emotional arousal was fully confirmed, throughout the number of experiments. The average classification accuracy for two classes of the least and the most stimulating movies varies within the range of 61‒72%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 4; 813-826
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dobór funkcji bazowych do aproksymacji sygnału elektrokortygraficznego w detekcji obszaru padaczkorodnego
Selection of base functions for electrographic signal approximation in the detection of epileptic zone
Autorzy:
Kołodziej, M.
Majkowski, A.
Rak, R. J.
Rysz, A.
Powiązania:
https://bibliotekanauki.pl/articles/261123.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
elektrokortykografia
ECoG
padaczka
analiza falkowa
algorytm Matching Pursuit
electrocorticography
epilepsy
wavelet analysis
Matching Pursuit algorithm
Opis:
Celem badań opisanych jest dobór funkcji bazowych, które pozwolą na dokładne opisanie sygnałów elektrokortykograficznych (ECoG) z zachowaniem ich właściwości diagnostycznych. Sygnały ECoG są powszechnie wykorzystywane do wskazania miejsca obszaru padaczkorodnego mózgu. Do doboru najlepszej rodziny falek w charakterze funkcji bazowych zastosowano algorytm MP (ang. Matching Pursuit). Przedstawiono przykład, w jaki sposób z wykorzystaniem analizy falkowej można wykryć zapisy patologiczne w sygnale ECoG.
The purpose of this research is a selection of base functions, which allow to accurately describe the electrocortical signals (ECoG), while maintaining their diagnostic properties. ECoG signals are commonly used to indicate the epileptogenic zone in the brain. The Matching Pursuit algorithm was used to select the best wavelet family as a base function. An example of using wavelet analysis to detect pathological records in ECoG signal, is demonstrated.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2017, 23, 4; 253-260
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision Support System for Epileptogenic Zone Location During Brain Resection
Autorzy:
Kołodziej, M.
Majkowski, A.
Rak, R. J.
Rysz, A.
Marchel, A.
Powiązania:
https://bibliotekanauki.pl/articles/221787.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ECoG
iEEG
electrocorticography
epileptogenic zone
signal analysis
expert system
neural network
Opis:
This paper presents a system for locating the epileptogenic zone (EZ) using an automated analysis of electrocorticography (ECoG) signal recorded with 20 electrodes placed on the brain surface. The developed system enables automatic determination of places where anomalies connected with epilepsy are observed. The developed algorithm was tested on signals recorded for 33 patients who, after a prior neurological analysis, underwent the brain resection surgery. The results obtained with the algorithm were compared with those of medical analyses performed by the neurologist. The proposed system has a satisfactory accuracy – 87.8% – and can be used as a decision-supporting tool by the neurosurgeon during brain resection.
Źródło:
Metrology and Measurement Systems; 2018, 25, 1; 15-32
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies