- Tytuł:
-
Prognozowanie zmian jakości wód podziemnych w układzie przestrzennym z wykorzystaniem sieci neuronowych
Spatial predictions of groundwater quality changes using neural networks - Autorzy:
- Kmiecik, E.
- Powiązania:
- https://bibliotekanauki.pl/articles/2063365.pdf
- Data publikacji:
- 2004
- Wydawca:
- Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
- Tematy:
-
jakość wód podziemnych
sieci monitoringowe
dane hydrogeochemiczne
sieci neuronowe
predykcja
klasyfikacja
groundwater quality
monitoring networks
hydrogeochemical data
neural networks
prediction
classification - Opis:
-
Zastosowanie sieci neuronowych do prognozowania zmian jakości wód w układzie przestrzennym oparte zostało na istniejącej bazie danych, zawierającej wyniki uzyskane w ramach regionalnego monitoringu jakości wód podziemnych RMWP przeprowadzonego dla zlewni górnej Wisły w latach 1993-1994 (Witczak i in., 1994a, b). Wyniki oznaczeń terenowych i laboratoryjnych (55) wskaźników fizykochemicznych (nieorganicznych i organicznych) wód poddano weryfikacji z zastosowaniem parametrów kontroli jakości oraz statystycznej analizy rozkładu tych wskaźników. Na zweryfikowanej bazie danych przeprowadzono próby predykcji wartości wskaźników fizykochemicznych wód dla punktu monitoringowego o określonych współrzędnych oraz klasyfikacji punktu monitoringowego (na podstawie wyników oznaczeń wskaźników fizykochemicznych) do obszaru o określonym użytkowaniu terenu. Uzyskane wyniki badań wskazują, że sieci neuronowe można z powodzeniem wykorzystać do prognozowania zmian jakości wód w układzie przestrzennym. Warunkiem jednak, by uzyskiwane prognozy cechowały się wysokim stopniem wiarygodności, jest konieczność weryfikacji danych wejściowych wprowadzanych do modelu.
This paper presents using neural networks in spatial prediction of groundwater quality changes on the base of existing database. This database consists of results of regional groundwater quality monitoring of the upper Vistula river basin carried out in 1993-1994 (Witczak et al., 1994a, b). Data (the results of field and laboratory determinations of physicochemical indicators of groundwater quality) was verified using quality control parameters and statistical analysis. On the verified database were conducted predictive trials to provide values of physicochemical indicators for the monitoring sites with known coordinates and monitoring site classification (on the base of physicochemical indicators values) to the area of known type of land-use. The results of such a study show that neural networks can be succesfully used for spatial prediction of changes in groundwater quality. The condition for reliability of the prognoses is verification of input data loaded to the model. - Źródło:
-
Biuletyn Państwowego Instytutu Geologicznego; 2004, 412, Hydrogeologia z. 6; 5-70
0867-6143 - Pojawia się w:
- Biuletyn Państwowego Instytutu Geologicznego
- Dostawca treści:
- Biblioteka Nauki