Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "choice number" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Edge colorings and total colorings of integer distance graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Powiązania:
https://bibliotekanauki.pl/articles/743555.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
integer distance graph
chromatic number
choice number
chromatic index
choice index
total chromatic number
total choice number
Opis:
An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 149-158
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sum List Edge Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/31340809.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum list edge coloring
sum choice index
sum list coloring
sum choice number
choice function
line graph
Opis:
Let $ G = (V,E) $ be a simple graph and for every edge $ \mathcal{e} \in E $ let $ L(e) $ be a set (list) of available colors. The graph $ G $ is called $L$-edge colorable if there is a proper edge coloring $ c $ of $ G $ with $ c(\mathcal{e} ) \in L( \mathcal{e} ) $ for all $ \mathcal{e} \in E $. A function $ f : E \rightarrow \mathbb{N} $ is called an edge choice function of $G$ and $G$ is said to be $f$-edge choosable if $G$ is $L$-edge colorable for every list assignment $L$ with $ |L( \mathcal{e} )| = f( \mathcal{e} ) $ for all $ \mathcal{e} \in E $. Set $ \text{size}(f) = \Sigma_{ \mathcal{e} \in E } f(e) $ and define the sum choice index $ \chi_{sc}^' (G) $ as the minimum of $ \text{size} (f) $ over all edge choice functions $f$ of $G$. There exists a greedy coloring of the edges of $G$ which leads to the upper bound $ \chi_{sc}^′ (G) \le 1/2 \Sigma_{ v \in V } d(v)^2 $. A graph is called sec-greedy if its sum choice index equals this upper bound. We present some general results on the sum choice index of graphs including a lower bound and we determine this index for several classes of graphs. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 709-722
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Sum List Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/31343297.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum list coloring
sum choice number
generalized sum list coloring
additive hereditary graph property
Opis:
A (graph) property \( \mathcal{P} \) is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties \( \mathcal{P} \). If to each vertex $v$ of a graph $G$ a list $L(v)$ of colors is assigned, then in an \( (L, \mathcal{P} ) \)-coloring of $G$ every vertex obtains a color from its list and the subgraphs of $G$ induced by vertices of the same color are always in \( \mathcal{P} \). The \( \mathcal{P} \)-sum choice number \( X_{sc}^\mathcal{P} (G) \) of $G$ is the minimum of the sum of all list sizes such that, for any assignment $L$ of lists of colors with the given sizes, there is always an \( (L, \mathcal{P} ) \)-coloring of $G$. We state some basic results on monotonicity, give upper bounds on the \( \mathcal{P} \)-sum choice number of arbitrary graphs for several properties, and determine the \( \mathcal{P} \)-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 689-703
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies