Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "magnetic" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Ocena narażenia pracowników na prądy indukowane przez pola magnetostatyczne tomografów rezonansu magnetycznego
Assessment of the exposure to currents induced in the worker's' bodies by static magnetic fields of magnetic resonance scanners
Autorzy:
Karpowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/261651.pdf
Data publikacji:
2010
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
tomografia
rezonans magnetyczny
pole magnetostatyczne
prąd indukowany
magnetic resonance
induced current
static magnetic field
tomography
Opis:
Wskutek poruszania w polu magnetostatycznym, wytwarzanym przez magnes tomografu rezonansu magnetycznego, w ciele pracowników indukowane są prądy elektryczne, mogące zakłócać procesy bioelektryczne w organizmie. Zaprezentowano zasady oceny tego rodzaju narażenia poprzez pomiary dynamiki zmienności indukcji magnetycznej (dB/dt) na powierzchni ciała pracownika, wykonującego czynności zawodowe. Zaprezentowano również przyldadowe wyniki badań narażenia występującego w czasie wykonywania sekwencji unormowanych ruchów przy magnesach wybranych tomografów otwartych (0,2T i 0,3T) oraz zamkniętych (1,0T i 1,5T).
Movements of wotkers in static magnetic field produced by magnet of magnetic resonance scanner cause induced electric current in their body. Such current can disturb bioelectric processes in human organism. Principles of the assessment of the exposure to induced currents by measurements of dynamics of changes of magnetic flux density (dB/dt) at the surface of the body of woiker performing occupational activities, were presented. The paper presents also exemplary results of examination of exposure of workers performing the sequence of standardized movements in the vicinity of magnets of selected scanners: with open structiue (0,2T and 0,3T) and with bore magnets (1,0T and 1,5T).
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2010, 16, 1; 74-77
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Narażenie na pola elektromagnetyczne przy czynnościach pielęgniarskich w placówkach diagnostyki rezonansu magnetycznego
Exposure to electromagnetic fields during nursing activities in magnetic resonance imaging centers
Autorzy:
Karpowicz, J.
Gryz, K.
Powiązania:
https://bibliotekanauki.pl/articles/261489.pdf
Data publikacji:
2012
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
skaner rezonansu magnetycznego
narażenie zawodowe
pole magnetostatyczne
badania ekspozymetryczne
magnetic resonance scanner
occupational exposure
static magnetic field
exposimetric investigations
Opis:
W pracy opisano prace pielęgniarskie związane z aplikowaniem farmaceutyków, najczęściej środków kontrastujących, pacjentom poddawanym badaniom za pomocą urządzeń rezonansu magnetycznego. Przeprowadzono badania pól elektromagnetycznych, które powstają w trakcie działania skanerów rezonansu magnetycznego 1,5 T. Na podstawie tych analiz scharakteryzowano i oceniono parametry narażenia pielęgniarek na pola elektromagnetyczne, zgodnie z kryteriami Dyrektywy Europejskiej 2004/40/WE. Prezentowane dane nie dotyczą narażenia przy śródoperacyjnym wykorzystaniu diagnostyki rezonansu magnetycznego.
Nursing activities related to administering pharmaceuticals, most frequently contrast agents, to patients subjected to magnetic resonance examinations, are characterized in the paper. The examinations of electromagnetic fields, corresponding to magnetic resonance scanner 1,5 T, were carried out. On their basis, the parameters describing the exposure to electromagnetic fields, were characterized and estimated, based on the criteria provided by the European Directive 2004/40/EC. Presented results do not consider the exposure during intraoperational use of magnetic resonance diagnostics.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2012, 18, 3; 206-212
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dostosowanie środków ochronnych w placówkach diagnostyki rezonansu magnetycznego do wymagań prawa pracy dotyczących zagrożeń elektromagnetycznych. Cz. 2
Adjustment of protection measures in the magnetic resonance imaging diagnostic centres to the requirements of labour law regarding electromagnetic hazards. P. 2
Autorzy:
Karpowicz, J.
Gryz, K.
Powiązania:
https://bibliotekanauki.pl/articles/112378.pdf
Data publikacji:
2018
Wydawca:
Indygo Zahir Media
Tematy:
rezonans magnetyczny
skaner rezonansu magnetycznego
bezpieczeństwo i higiena pracy
prawo pracy
magnetic resonance
magnetic resonance scanner
occupational health and safety
labour law
Opis:
Najpóźniej 1 lipca 2018 roku upływa okres przejściowy, w którym środki ochronne, stosowane w celu zapewnienia bezpiecznych i higienicznych warunków pracy w placówkach użytkujących źródła pola elektromagnetycznego powinny być dostosowane do aktualnych wymagań prawa pracy. W artykule scharakteryzowano te wymagania, w kontekście typowych warunków narażenia na pole elektromagnetyczne pracujących w medycznych placówkach diagnostyki rezonansu magnetycznego, omówionych w pierwszej części opracowania. Szczególną uwagę zwrócono na zmiany wprowadzone w 2016 roku w stosunku do wymagań obowiązujących w latach 1995-2016. Wymagania te nie dotyczą pacjentów.
No later than on July 1st, 2018, it is the end of a transient period, when protection measures, applied in the aim to ensure safety and hygiene of working conditions in the facilities using electromagnetic field sources should be adjusted to current requirements of labour law. The article characterises these requirements, in the context of typical conditions of exposure to electromagnetic field of workers in the centres of medical imaging diagnostic of magnetic resonance, which were described in the first part of the article. Special attention has been drawn to changes introduced in 2016 comparing to requirements in force over 1995-2016. These requirements do not concern patients.
Źródło:
Inżynier i Fizyk Medyczny; 2018, 7, 2; 107-115
2300-1410
Pojawia się w:
Inżynier i Fizyk Medyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ekspozymetryczny profil narażenia zawodowego na pole magnetostatyczne przy tomografie rezonansu magnetycznego 1,5 T
Exposimetric profile of occupational exposure to static magnetic field of magnetic resonance scanner of 1.5 T
Autorzy:
Karpowicz, J.
Gryz, K.
Powiązania:
https://bibliotekanauki.pl/articles/261240.pdf
Data publikacji:
2010
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
tomograf
rezonans magnetyczny
narażenie zawodowe
ryzyko zawodowe
pole magnetostatyczne
badania ekspozymetryczne
MRI scanner
magnetic resonance imaging
occupational exposure
static magnetic field
exposimetric investigations
Opis:
W pracy scharakteryzowano ekspozymetryczne profile narażenia zawodowego techników i pielęgniarek na pole magnetostatyczne w czasie wykonywania badań diagnostycznych w tomografie rezonansu magnetycznego. Wyniki badań rzeczywistych warunków narażenia wykonanych ekspozymetrem hallotronowym w czasie rutynowych czynności przy badaniach pacjentów omówiono na przykładzie 16 czynności przy tomografie z magnesem 1,5 T. Czas narażenia na pole o indukcji przekraczającej 0,5 mT wynosi przy tych czynnościach 0,5-2,3 minuty, a czas narażenia przekraczającego 70 mT wynosi 0,0-0,3 minuty. Maksymalny poziom narażenia wynosi 16,8-126 mT.
In this paper, exposimetric profiles of occupational exposures of technicians and nurses to static magnetic fields during performing magnetic resonance imaging examinations, were characterized. Results of examination by hallotron exposimeter of the real exposure of the personnell performing 16 tasks in 1,5 T MRI scanner have been presented. Maximal exposure in the static magnetic field exceeding 0,5 mT is in the range 0,5-2,3 minutes and the exposure exceeding 70 mT is in the range 0,0-0,3 minutes. Maximum level of exposure is 16,8-126 mT.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2010, 16, 3; 261-264
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Profilaktyka elektromagnetycznych zagrożeń wypadkowych w placówkach diagnostyki medycznej stosujących technikę rezonansu magnetycznego
The prevention of electromagnetic accidents in the medical centers involve in the medical diagnostic with the use of magnetic resonance technique
Autorzy:
Karpowicz, J.
Gryz, K.
Powiązania:
https://bibliotekanauki.pl/articles/179545.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
rezonans magnetyczny
pole magnetostatyczne
zagrożenia balistyczne
siła translacji wywierana na obiekty ferromagnetyczne
magnetic resonance
static magnetic field
ballistic hazards
translation force attracted on the ferromagnetic objects
Opis:
W artykule zaprezentowano przegląd najpoważniejszych i najpowszechniejszych elektromagnetycznych zagrożeń wypadkowych, jakie występują w placówkach medycznej diagnostyki rezonansu magnetycznego wskutek oddziaływania na obiekty materialne i ludzi, wywieranego przez pole magnetostatyczne wytwarzane nieprzerwanie przez magnes skanera. Należą do nich zagrożenia balistyczne (wynikające z przyciągania do magnesu obiektów ferromagnetycznych), zakłócenia pracy urządzeń elektronicznych (w tym implantów medycznych), wrażenia wynikające z powstawania prądów indukowanych w organizmie człowieka poruszającego się w polu magnetostatycznym. Ponadto nie można wykluczyć zagrożeń zdrowia związanych z przewlekłym narażeniem zawodowym na pola magnetostatyczne.
The paper presents the review of the most serious and the most common accidents caused by electromagnetic interaction, which occur in the medical centers of magnetic resonance diagnostic because of interaction on the objects and humans, attracted by the static magnetic field which is permanently emitted by the magnet of scanner. They include ballistic hazards (caused by ferromagnetic objects attracting to the magnet), electronic devices malfunctions (including medical implants), sensations caused by electric currents induced in the body because of movements in the static magnetic field. The health hazards related to long-term occupational exposure to static magnetic field is also not excluded.
Źródło:
Bezpieczeństwo Pracy : nauka i praktyka; 2013, 9; 28-29
0137-7043
Pojawia się w:
Bezpieczeństwo Pracy : nauka i praktyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena hałasu generowanego przez skanery rezonansu magnetycznego i jego wpływu na narząd słuchu - badania pilotażowe
The evaluation of the noise emitted by magnetic resonance scanners and its influence on the sense of hearing - a pilot study
Autorzy:
Morzyński, L.
Kozłowski, E.
Młyński, R.
Karpowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/261527.pdf
Data publikacji:
2011
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
skaner rezonansu magnetycznego
hałas
narażenie zawodowe
occupational exposure
magnetic resonance scanner
acoustic noise
Opis:
W pracy przedstawiono wyniki badań hałasu wytwarzanego przez skanery rezonansu magnetycznego o indukcji magnetycznej 1,5 T. Wykazano dużą rozpiętość wartości ciśnienia akustycznego hałasu w zależności od rodzaju badania. Równoważny poziom dźwięku A (LAeq,Tp) zawierał się w przedziale 69,8-96,3 dB, maksymalny poziom dźwięku A (LAmax) w przedziale 81,4-106,8 dB, a szczytowy poziom dźwięku C w przedziale 98-116,7 dB. Przeprowadzona ocena zagrożenia hałasem pracowników dowodzi, że długotrwałe przebywanie w pobliżu pracującego skanera może powodować przekroczenie wartości dopuszczalnego narażenia i prowadzić do uszkodzenia słuchu.
In this paper, the results of examination of acoustic noise, generated by 1,5 T magnetic resonance scanners, are reported. The measurement results showed the wide range of sound pressure level values, depending on the type of examination. The A-weighted equivalent sound level (LAeq,Tp) was in the range of 69,8-96,3 dB, the maximum A-weighted sound level (LAmax) maintained within the range of 81,4-106,8 dB, and the peak C-weighted sound level was in the range of 98-116,7 dB. The assessment of the occupational hazard, resulting from the exposure to the noise revealed that the prolonged contact with an active scanner may result in overcome of the maximum allowable level of exposure to acoustic noise and thus, it may cause the hearing damage.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2011, 17, 4; 292-296
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd miar skutków narażenia na zmienne w czasie pole elektromagnetyczne i właściwości metrologicznych mierników, istotnych podczas oceny narażenia w środowisku pracy
A review of the effects of exposure to a time-varying electromagnetic field and the metrological properties of measurement devices that have a significant influence when evaluating exposure in the work environment
Autorzy:
Bieńkowski, P.
Karpowicz, J.
Kieliszek, J.
Powiązania:
https://bibliotekanauki.pl/articles/137758.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
zagrożenia elektromagnetyczne
narażenie pracowników
ocena ekspozycji
pole elektryczne
pole magnetyczne
electromagnetic hazards
workers’ exposure
exposure evaluation
electric field
magnetic field
Opis:
Eksploatacja wszystkich urządzeń i instalacji zasilanych prądem elektrycznym jest nierozerwalnie związana z zamierzoną lub niezamierzoną emisją energii elektromagnetycznej. W wyniku tej emisji pole elektromagnetyczne powszechnie występuje w środowisku. Bezpośrednim skutkiem oddziaływania pola z obiektami elektroprzewodzącymi (w tym z ciałem człowieka) jest indukowanie pola elektrycznego i prądu elektrycznego w eksponowanych obiektach (pojedynczych obiektach w tzw. wolnej przestrzeni lub w grupach obiektów połączonych galwanicznie). W organizmie człowieka mogą one wywołać elektrostymulację tkanek pobudliwych lub wzrost temperatury, co prowadzi do zaburzeń funkcjonowania organizmu lub utrudnia bezpieczne realizowanie obowiązków zawodowych. Przy identyfikacji, badaniach i ocenie parametrów narażeń na pola elektromagnetyczne są stosowane zarówno techniki pomiarowe, symulacje komputerowe, jak i analiza parametrów technicznych obiektów technicznych emitujących pola elektromagnetyczne. Zwykle największą miarodajność w przypadku oceny zagrożeń zawodowych mają badania in situ, ponieważ umożliwiają ocenę zarówno rzeczywistych parametrów pola elektromagnetycznego w specyficznych warunkach przestrzeni pracy, gdzie eksploatowane mogą być jednocześnie różnorodne urządzenia i instalacje elektryczne oraz rozmieszczone są zróżnicowane obiekty materialne modyfikujące morfologię ekspozycji (m.in. rozkład przestrzenny i zmienność w czasie), jak i ocenę warunków narażenia przy aktualnym stanie technicznym źródeł pola, który zmienia się wskutek zmiennych warunków ich eksploatacji i konserwacji oraz procesów starzeniowych urządzeń. W artykule omówiono: charakterystyki bezpośredniego i pośredniego oddziaływania pola elektromagnetycznego na organizm człowieka, miary skutków narażenia na zmienne w czasie pole elektromagnetyczne (o częstotliwości z pasma od 5 Hz do 300 GHz), parametry charakteryzujące pole elektromagnetyczne w środowisku (stosowane zgodnie z wymaganiami prawa pracy podczas oceny narażenia pracowników), zasady pomiaru pola elektrycznego i magnetycznego oraz właściwości metrologiczne mierników (istotne z punktu widzenia jakości pomiarów wykorzystywanych w dziedzinie bezpieczeństwa i higieny pracy). Ponadto scharakteryzowano czynniki determinujące niepewność pomiarów pola elektromagnetycznego w środowisku pracy, ze szczególnym uzasadnieniem wymagań określających parametry metrologiczne aparatury wykorzystywanej do pomiarów podjętych ze względu na ocenę zgodności warunków narażenia z ustalonymi limitami dotyczącymi natężenia pola elektrycznego i magnetycznego w miejscu pracy.
Any use of electric devices and installations is inextricably linked to the intentional or unintentional emission of electromagnetic energy. Consequently, the electromagnetic field is commonly present in the environment. The direct effects of the electromagnetic influence on electrically conductive objects (including the human body) consists in the electric field and current induction in exposed objects (single objects in the ‘free space, or in groups of objects with galvanic contact). In the human body, they may cause electrostimulation in electro sensitive tissues or an increase in temperature that may lead to malfunctions within the body or difficulties in the safe performance of professional duties. When identifying, investigating and evaluating the parameters of the electromagnetic field, various techniques can be applied: measurements, computer simulations or the analysis of parameters of technical objects emitting an electromagnetic field. The highest quality evaluation of occupational hazards usually comes from in-situ investigations. This is because they allow the evaluation of the real parameters of electromagnetic fields in the particular conditions of the workplace where various electric devices and installations may be used at the same time, and where various physical objects are present that might influence the exposure morphology (e.g. spatial distribution and time variability). They also permit an evaluation of the exposure conditions taking into account the actual technical stage of the field sources, which vary due to changes in the use and maintenance conditions, or due to aging devices. The article presents: the characteristics of direct and indirect interaction between the electromagnetic field and the human body, the measures of exposure to a time-varying electromagnetic field (5 Hz – 300 GHz frequency band), the parameters characterizing the electromagnetic field in the environment (used according to the labour law in evaluations of workers’ exposure), the principles of electric and magnetic field measurements and the metrological properties of measurement devices (significant from the point of view of the quality of measurements used in the area of occupational health and safety). Factors determining the uncertainty of electromagnetic field measurements are also characterized, focusing on the rationale for guidelines on the metrological parameters of devices used in measurements intended to evaluate whether exposure conditions comply with the established limits of electric and magnetic field strength at the workplace.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 4 (90); 41-74
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pola elektromagnetyczne w budynkach ze stacjami transformatorowymi
Electromagnetic fields in buildings with transformer stations
Autorzy:
Gryz, K.
Karpowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/209311.pdf
Data publikacji:
2009
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
inżynieria środowiska
stacje transformatorowe
pole magnetyczne
pole elektryczne
ekspozycja środowiska
environmental engineering
transformer stations
magnetic field
electric field
environment's exposure
Opis:
Przedstawiono problematykę zagrożeń elektromagnetycznych występujących w budynkach, w których zlokalizowane są stacje transformatorowe. Zaprezentowano wyniki badań indukcji magnetycznej pola magnetycznego zmiennego o częstotliwości przemysłowej 50 Hz w pomieszczeniach sąsiadujących ze stacjami transformatorowymi. Omówiono metody ograniczania pola magnetycznego w otoczeniu elektroenergetycznego wyposażenia budynków.
Transformer stations are sometimes located in dwellings and buildings with work space. Problems of electromagnetic fields produced by transformers and the need of their reduction in the buildings is important in the aspects of the possible health effects of chronic exposure to a low frequency magnetic field, even relatively weak (especially the possibility of increased cancer risk). Presented investigations were done in transformer stations 15/0.4 kV of power in the range of 160-1000 kVA and in the neighbouring working and living rooms. These investigations consisted of measurements of the rms value of magnetic flux density and electric filed strength in transformer stations, measurements of the rms value of magnetic flux density in rooms neighbouring to transformer stations and many hours registration of the rms value of magnetic flux density in rooms. Measurements were done in the so called ELF frequency range (50 Hz-2 kHz). Current loads of transformers were identified to establish their relation with the results of measurements of magnetic field. Magnetic flux density in the nearest rooms to transformer stations can reach values up to a few or a few tens of microtesla (µT) and is below a limit value for general public exposure (in Poland: 75 µT). Magnetic flux density in stations is significantly higher and can exceed permissible value for 8 hours workers' exposure (in Poland: 200 µT). The level of magnetic filed in the rooms neighbouring to transformers stations depends on an load of transformer, kind of transformer power output (cables or buses), and distance of cables or buses from walls and ceilings of station. The data from operators of city electrical system shows differences in current loads of transformers: from 50 A for all transformers up to 460 A in case of transformers of 630 kVA nominal power. The differences in current loads result from changes in consumption of power depended on time of day or season of year and numbers of consumer of electric energy connected to a transformer station. Maximum phase current is usually (50-70%) of maximum output current. The increase in current from transformers and increase in produced magnetic field is possible in current technical system. Most often the phase load of transformers of 160-630 kVA nominal power is in the range of 50-150 A. Various constructional and architectural solutions (dimensions of transformer stations and distribution rooms of low voltage, distance of electrical equipment from working and living rooms) influence on a level of magnetic filed in the vicinity of electrical devices. Usually, the height of transformer station is in the range of 3-4 m. The buses or cables of low voltage connected transformer with switch box are located 0.5-1.7 m under ceiling. Sometimes cables are put on the wall. Exposure to magnetic field of low frequency in the rooms neighbouring to transformer stations is below permissible exposure for general public, nevertheless a level of magnetic field is significantly higher than in rooms in buildings without transformers. According to resolutions of European Parliament and standing of World Health Organisation, available measures to reduce a level of magnetic field should be undertaken. One of the most effective methods is close-up of cables to allow the self-compensation of magnetic fields produced by currents of different phases. This method in case of transformer stations can give 10 - fold decrease in magnetic field in the rooms neighbouring to transformers stations.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2009, 58, 4; 125-137
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Narażenie na pole elektromagnetyczne w przestrzeni pracy podczas użytkowania urządzeń do magnetoterapii lub magneto stymulacji : metoda pomiaru pola elektromagnetycznego in situ – wymagania szczegółowe
Exposure to the electromagnetic field in the work space during the use of magnetotherapy or magnetostimulation devices : the method of in situ measurements of electromagnetic field–specific requirements
Autorzy:
Karpowicz, J.
Aniołczyk, H.
Bieńkowski, P.
Gryz, K.
Kieliszek, J.
Politański, P.
Zmyślony, M.
Zradziński, P.
Powiązania:
https://bibliotekanauki.pl/articles/138347.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
magnetoterapia
magnetostymulacja
pole magnetyczne
pomiary pola elektromagnetycznego
metoda rekomendowana
środowisko pracy
bezpieczeństwo i higiena pracy
zdrowie publiczne
magnetotherapy
magnethostimulation
magnetic field
electromagnetic field measurements
recommended method
work environment
occupational safety and health
public health
Opis:
W prawie pracy określono obowiązek rozpoznania i oceny zagrożeń elektromagnetycznych w otoczeniu urządzeń i instalacji emitujących pole elektromagnetyczne (pole-EM). W rozporządzeniu Ministra Rodziny, Pracy i Polityki Społecznej z dnia 29 czerwca 2016 r. w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na pole-EM wśród typowych źródeł pola-EM wymieniono „urządzenia do magnetoterapii” (DzU 2016, poz. 950, zał. 1., poz. 10., zm. poz. 2284). Urządzania do magnetoterapii są wykorzystywane do łagodzenia różnych dolegliwości, z wykorzystaniem oddziaływania quasi-statycznego pola-EM. Podczas zabiegu w pobliżu aktywnych aplikatorów występuje pole-EM stref ochronnych. W związku z tym, warunki narażenia pracujących podczas użytkowania aplikatorów wymagają okresowej kontroli, wykonanej „zgodnie z metodami określonymi w Polskich Normach, a w przypadku braku takich norm, metodami rekomendowanymi i zwalidowanymi” zgodnie z wymaganiami zawartymi w rozporządzeniu Ministra Zdrowia z dnia 2 lutego 2011 r. w sprawie badań i pomiarów czynników szkodliwych dla zdrowia w środowisku pracy (DzU 2011, poz. 166), celem rozpoznania zagrożeń elektromagnetycznych i podjęcia odpowiednich środków ochronnych (DzU 2016, poz. 950, zm. poz. 2284). Metody pomiarów pola-EM w zakresie koniecznym do realizacji wspomnianych wymagań nie są obecnie znormalizowane, w związku z tym, celem relacjonowanej pracy było opracowanie metody rekomendowanej do pomiaru parametrów pola-EM in situ w przestrzeni pracy, podczas użytkowania urządzeń do magnetoterapii lub magnetostymulacji. Na podstawie wyników przeprowadzonych badań wykazano, że podczas zabiegu fizyko-terapeutycznego źródłem pola-EM jest jedynie aplikator do magnetoterapii lub magnetostymulacji. W przypadku wykorzystywania pola-EM o częstotliwości podstawowej do 100 Hz o sinusoidalnym lub niesinusoidalnym przebiegu ciągłym – przemiennym lub prostowanym (tj. ze składową stałą), zasięg pola-EM stref ochronnych jest determinowany przez rozkład przestrzenny quasi-statycznego pola magnetycznego (pola-M). Ponieważ tego typu urządzenia przeważają w polskich placówkach fizykoterapeutycznych, do oceny zagrożeń elektromagnetycznych w przestrzeni pracy rekomendowano użycie uproszczonej metody pomiarów. Polega ona na pomiarze wartości skutecznej (RMS) na-tężenia pola-M w sinusoidalnym trybie pracy urządzenia. W ocenie wyników w takim przypadku uwzględnia się limity narażenia określone w prawie pracy w stosunku do wartości równoważnych natężenia pola-M przez użycie odpowiedniego współczynnika korekcyjnego, odzwierciedlającego konieczność zaostrzonej oceny narażenia przy niesinusoidalnym trybie pracy urządzenia (tj. użycie limitów określonych dla pola-EM o częstotliwości 100 Hz). W przypadku urządzeń emitujących pole-EM o częstotliwościach z zakresu kiloherców (kHz) lub pola-EM o impulsowej charakterystyce zarekomendowano stosowanie bardziej złożonych pomiarów, obejmujących indywidualne rozpoznanie charakterystyk mierzonego pola-EM i określenie współczynników korekcyjnych do interpretacji wyników pomiarów wartości skutecznej na podstawie charakterystyk metrologicznych stosowanych przyrządów pomiarowych. W metodzie określono również zasady: przygotowania pomiarów i aparatury pomiarowej, wyboru punktów pomiarowych, wyznaczania zasięgu stref ochronnych oraz dokumentowania wyników pomiarów. Omówiono również najistotniejsze źródła niepewności wyników pomiaru pola-EM w przestrzeni pracy przy omawianych urządzeniach.
Labour law defines the obligation to identify and evaluate electromagnetic hazards in the vicinity of equipment and installations emitting an electromagnetic field (EM-field). Following the regulation of ministry of labour which set the provisions regarding the safety and health in EM-field, the "devices for magnetotherapy" have been mentioned among the typical sources of an EM-field (OJ 2016 items 950 and 2284, Annex 1, item 10). Magnetotherapy devices are used to alleviate various diseases, using the influence of aquasistatic EM-field. The protective zones of the EM-field are present near the active applicators during the treatment, so the conditions of exposure of personnel present nearby during the use of the applicators require a periodic inspection made "according to the methods specified in the Polish Standards, and in the absence of such standards, by recommended and validated methods according to the provisions of regulation of ministry of health (Regulation...,Journal of Laws2011, item 166), in order to identify electromagnetic hazards and to take appropriate protective measures (OJ 2016 item 950and 2284).The methods of measuring the EM-field to the extent necessary to meet the serequirements are currently not standardised; therefore, the aim of the presented work was to develop a recommended method for measuring the parameters of the EM-field in-situin the work space while using magnetotherapy or magneto stimulation devices.The recommended measurement method is based on detailed investigations on the characteristics of exposure to the EM-field surrounding typical magnetotherapy devices operated in Poland: by approx. 700 applicators of 500 devices (such as Magnetronic (series MF-10, MF-12, MF 20 and BTL), Magnetus (series 2 and 2.26), Magnoter (series D-56, D56A BL), Magner LT, Magner Plus, Magneris, MAG magnetic, Magnetic, Astar ABR).The oscilloscopic identification, the characteristics of variability in the time of the EM-field emitted by devices for magnetotherapy and magneto stimulation, and the measurements of the spatial distribution of the EM-field in the workspace by devices have been worked out. Based on the results of the study, it was shown that, during physiotherapy treatment, only the applicator for magnetotherapy or magneto stimulation is the source of the EM-field. When using an EM-field with a frequency of up to 100 Hz and a continuous sinusoidal or non-sinusoidal waveform –alternating or rectified (i.e. with a constant component) –the range of protective zones of EM-field is deter-mined by the spatial distribution of the quasi-static magnetic field (M-field). Because this type of device predominates in Polish physiotherapy centres, to assess electromagnetic hazards in the workspace, it was recommended to use a simplified method of measurement, involving the measurement of the root-mean-square (RMS) value of the M-field strength in sinusoidal operation mode and an evaluation of results, taking into account the limits reflect-ing the measures of exposure specified in the labour law in relation to the equivalent value of the M-field strength, but using an appropriate correction factor reflecting the need to strengthen the exposure evaluation at non-sinusoidal modes of operation (i.e. by the use of limits set for EM-field of 100 Hz frequency). In the case of devices emitting an EM-field with frequencies in the kilohertz (kHz) range or a pulsed EM-field, it was recommended to use more complex measurements, including an individual analysis of the characteristics of the measured EM-field and a determination of correction factors to the interpretation of the measured RMS value (based on the metrological characteristics of measuring devices used). The method also sets out principles for: measurements and measurement devices preparation, locating the measurement points, determining the range of protection zones and documenting the measurement results. The most important sources of uncertainty concerning EM-field measurements in the workspace near magnetotherapy or magnetic stimulation applicators were also discussed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 4 (90); 151-180
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Narażenie na pole elektromagnetyczne w przestrzeni pracy podczas użytkowania systemów elektroenergetycznych i elektrycznych instalacji zasilających prądu przemiennego w energetyce : metoda pomiaru pola elektromagnetycznego in situ – wymagania szczegółowe
Exposure to the electromagnetic field in the work space during the use of electricity and electric installations of alternating current in power engineering : the method of in situmeasurements of electromagnetic field –specific requirements
Autorzy:
Szuba, M.
Hasiec, I.
Papliński, P.
Śmietanka, H.
Zajdler, K
Zmyślony, M.
Gryz, K.
Karpowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/138452.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
elektroenergetyczne linie wysokiego napięcia
rozdzielnie elektroenergetyczne
instalacje elektroenergetyczne
pole elektryczne
pole magnetyczne
pomiary pola elektromagnetycznego
metoda rekomendowana
środowisko pracy
bezpieczeństwo i higiena pracy
high voltage power lines
high voltage switchyards
electric power installations
electric field
magnetic field
electromagnetic field measurements
recommended method
working environment
occupational safety and health
Opis:
Pole elektromagnetyczne (pole-EM) występuje w otoczeniu wszystkich instalacji i urządzeń zasilanych energią elektryczną, jest więc również nierozerwalnie związane z przesyłaniem energii elektrycznej przez sieć elektroenergetyczną, tworzoną głównie przez linie i rozdzielnie elektroenergetyczne: najwyższych, wysokich, średnich i niskich napięć, w których otoczeniu może występować pole-EM stref ochronnych. Obiekty takie zostały wymienione wśród typowych źródeł pola-EM jako „systemy elektroenergetyczne i elektryczna instalacja zasilająca” w rozporządzeniu Ministra Rodziny, Pracy i Polityki Społecznej z dnia 29 czerwca 2016 r. w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na pole-EM (DzU 2016, poz. 950, zm. poz. 2284; zał. 1., poz. 2.). W związku z tym, warunki narażenia pracujących w otoczeniu urządzeń lub instalacji sieci elektroenergetycznych wymagają okresowej kontroli, zgodnie z wymaganiami określonymi w rozporządzeniu Ministra Zdrowia z dnia 2 lutego 2011 r. w sprawie badań i pomiarów czynników szkodliwych dla zdrowia w środowisku pracy, w którym określono, że powinna być ona wykonana „zgodnie z metodami określonymi w Polskich Normach, a w przypadku braku takich norm, metodami rekomendowanymi i zwalidowanymi” (DzU 2011, poz. 166). Celem takiej kontroli jest rozpoznanie zagrożeń elektromagnetycznych w przestrzeni pracy i podjęcie odpowiednich środków ochronnych (DzU 2016, poz. 950, zm. 2284). Ponieważ metody pomiarów pola-EM odpowiednie do realizacji tych wymagań prawa pracy nie są obecnie znormalizowane, celem przeprowadzonych badań było opracowanie metody rekomendowanej do pomiaru parametrów pola-EM in situ w przestrzeni pracy, podczas użytkowania sieci elektroenergetycznych. Rekomendowana metoda pomiarów została opracowana na podstawie przeglądu: parametrów konstrukcyjnych i elektrycznych infrastruktury energetycznej użytkowanej w Polsce, przeglądu danych literaturowych oraz wyników badań własnych wykonanych przez autorów w kilkuset obiektach elektroenergetycznych (najwyższych, wysokich, średnich i niskich napięć) o zróżnicowanej strukturze geometrycznej i funkcjonalnej, użytkowanych na terenie całego kraju. Przeprowadzone pomiary obejmowały pomiary wartości skutecznych natężenia pola elektrycznego i natężenia pola magnetycznego w przestrzeni pracy, z wyłączeniem narażeń występujących podczas prac wykonywanych wg procedur określanych jako praca na potencjale. Przeprowadzone badania obejmowały pomiary wartości skutecznej natężenia pola elektrycznego i natężenia pola magnetycznego w przestrzeni pracy, z wyłączeniem narażeń występujących podczas prac wykonywanych według procedur określanych jako praca na potencjale. Pomiary obejmowały następujące obiekty prądu przemiennego użytkowane w ramach krajowego systemu elektroenergetycznego: napowietrzne i wnętrzowe rozdzielnie elektroenergetyczne o napięciach znamionowych (110 ÷ 750) kV oraz linie elektroenergetyczne o napięciach znamionowych (110 ÷ 400) kV, określanych jako wysokie lub najwyższe napięcia (WN lub NN); linie elektroenergetyczne niskiego lub średniego napięcia (nn lub SN) o napięciach znamionowych (0,4 ÷ 110) kV (z wyłączeniem obiektów o napięciu 110 kV, zaliczanym do WN); rozdzielnie i transformatory nn lub SN o napięciach znamionowych (0,4 ÷ 110) kV (z wyłączeniem obiektów o napięciu 110 kV, zaliczanym do WN); generatory prądu wraz z torami prądowymi oraz aparaturą łączeniową i pomiarową o mocach powyżej 1 MW; instalacje potrzeb własnych na stacjach elektroenergetycznych; trójfazowe instalacje przemysłowe. Na podstawie wyników przeprowadzonych badań wykazano, że podczas użytkowania wspomnianych elementów sieci elektroenergetycznej są wykorzystywane prądy przemienne o częstotliwości 50 Hz i o stabilnym napięciu charakterystycznym dla jej poszczególnych obiektów, a obciążeniach prądowych zmieniających się w znacznym stopniu (o kilkaset procent), zależnie od zapotrzebowania odbiorców na energię elektryczną. W związku z tym, zarekomendowano metodę pomiarów, która obejmuje pomiar wartości skutecznej (RMS) natężenia pola elektrycznego i natężenia pola magnetycznego, których wyniki są oceniane bezpośrednio w odniesieniu do limitów narażenia, które określono w prawie pracy w stosunku do wartości równoważnych takich parametrów narażenia. W metodzie określono również zasady: przygotowania pomiarów i aparatury pomiarowej, wyboru punktów pomiarowych, wyznaczania zasięgu stref ochronnych oraz dokumentowania wyników pomiarów, a także warunki klimatyczne wykonywania pomiarów. Omówiono również najistotniejsze źródła niepewności wyników pomiaru pola-EM przy omawianych urządzeniach elektroenergetycznych.
Electromagnetic field (EMF) occurs around all the installations and equipment powered by electricity, so it is also inextricably linked to the transmission of electricity through the power grid, created mainly by the power lines and switchyards of the highest, high, medium and low voltage. In their vicinity EMF of protection zones may occur. Such installations have been listed among the common sources of EMF as a "power systems and electrical power supply installation" in the Regulation of the Minister of Family, Labour and Social Policy on health and safety at work related to exposure to EMF(OJ 2016 item. 950, est. 1, pos. 2). The refore, the exposure conditions of workers in the vicinity of equipment or installation of power grids require periodic inspections in accordance with the requirements of the Regulation of the Minister of Health on the tests and measurements of health hazard factors in the working environment (Regulation ...., OJ 2011, pos. 166), which should be done "in accordance with the methods set out in Polish standards, in the absence of such standards, using recommended and validated methods". The purpose of such inspection is to identify the electromagnetic hazards in work space and take appropriate protective measures (OJ 2016 pos. 950). Because the methods of EMF measurement adequate to meet the requirements of labour law are currently not standardized, the objective of conducted research was to develop a method recommended for measuring parameters of the EMF in situ in the work space during the use of electricity networks. The recommended method of measurement was developed on the basis of the review of design and electrical parameters of energy infrastructure in Poland, the review of literature and own research performed by the authors in hundreds of power facilities (the highest, high, medium and low voltage)and installations of various geometrical and functional structures used in the whole country. The performed research included measurements of RMS value of electric field and magnetic field strength in the work space, with the exception of exposures occurring during the work performed according to procedures known as live-line work. The measurements included the following objects used in the national electricity grid: electrical switchyards with nominal voltage from 110 kV to 750 kV (outdoor and indoor); power lines of high voltage (HV) with nominal voltage from 110 kV to 400 kV; power lines of low or medium voltage (LV or MV) with rated voltage of 0.4 kV to 110 kV (with the exception of 110 kV); switchyards, LV or MV switchboards and transformers; generators with bus bars, cables etc., current transformers, switchgear and measuring equipment with capacity exceeding 1 MW, installations of own needs on electrical substations, three-phase alternating current industrial installations. On the basis of the results of the research it was demonstrated that during the use of these elements of the power grid alternating currents with a frequency of 50 Hz are used, with a stable voltage characteristic of the individual objects and the load current changing significantly (by several hundred percent), depending on customers’ demand for electricity. The measurement method was recommended which involves measuring the RMS value of electric field strength and magnetic field strength, which results are evaluated immediately with respect to the exposure limits set in the labour law to the equivalent value of such exposure parameters. The method also describes principles: measurements and measurement devices preparation, choice of measurement points, determining the ranges protection zones and document measurement results, as well a climatic conditions of measurements. It also discusses the most important sources of uncertainty of results of EMF measurement near discussed power devices.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 4 (90); 91-150
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies