Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "candida" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach
Autorzy:
Karkowska-Kuleta, Justyna
Zajac, Dorota
Bochenska, Oliwia
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1038923.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
cell surface shaving
proteomics
fungal pathogens
cell wall
Candida
Opis:
In the course of infections caused by pathogenic yeasts from the genus Candida, the fungal cell surface is the first line of contact with the human host. As the surface-exposed proteins are the key players in these interactions, their identification can significantly contribute to discovering the mechanisms of pathogenesis of two emerging pathogens from this genus, C. parapsilosis and C. tropicalis. Therefore, the aim of the present study was to identify the cell wall-attached proteins of these two species with the use of cell surface shaving and a shotgun proteomic approach. Different morphological forms of C. parapsilosis and C. tropicalis cells obtained after growth under various conditions were subjected to this treatment. This allowed to indicate the most abundant cell surface proteins on the basis of the normalized spectral abundance factors. In case of yeast-like forms these were, among others, proteins similar to a chitinase, glyceraldehyde-3-phosphate dehydrogenase and an inducible acid phosphatase for C. parapsilosis, and a constitutive acid phosphatase, pyruvate decarboxylase and glyceraldehyde-3-phosphate dehydrogenase for C. tropicalis. In case of pseudohyphal forms, proteins similar to a cell surface mannoprotein Mp65, chitinase and glycosylphosphatidylinositol-anchored transglycosylase Crh11 were identified at the cell surface of C. parapsilosis. The Rbt1 cell wall protein, a hyphally regulated cell wall protein and proteins from agglutinin-like sequence protein family were found as the most abundant on C. tropicalis pseudohyphae. Apart from the abovementioned proteins, several additional covalently bound and atypical cell wall proteins were also identified. These results extend the current knowledge regarding the molecular basis of virulence of these two non-albicans Candida species.
Źródło:
Acta Biochimica Polonica; 2015, 62, 4; 807-819
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interaction of human fibronectin with Candida glabrata epithelial adhesin 6 (Epa6)
Autorzy:
Zajac, Dorota
Karkowska-Kuleta, Justyna
Bochenska, Oliwia
Rapala-Kozik, Maria
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1038757.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
Candida glabrata
epithelial adhesins
fibronectin
surface plasmon resonance
Opis:
Adherence of pathogens to extracellular matrix proteins and host cells is one of the essential steps in the microbial colonization of the human organism. The adhesion of C. glabrata, i.e. the second major causative agent of human disseminated candidiases after C. albicans, to the host epithelium mainly engages specific fungal cell wall proteins - epithelial adhesins (Epa) - in particular, Epa1, Epa6 and Epa7. The aim of the present study was to identify the major Epa protein involved in the interactions with the human extracellular matrix protein - fibronectin - and to present the kinetic and thermodynamic characteristics of these interactions. A relatively novel gel-free approach, i.e. the "cell surface shaving" that consists in short treatment of fungal cells with trypsin was employed to identify the C. glabrata surfaceome. Epa6 was purified, and the isolated protein was characterized in terms of its affinity to human fibronectin using a microplate ligand-binding assay and surface plasmon resonance measurements. The dissociation constants for the binding of Epa6 to fibronectin were determined to range between 9.03 × 10-9 M and 7.22 × 10-8 M, depending on the method used (surface plasmon resonance measurements versus the microplate ligand-binding assay, respectively). The identified fungal pathogen-human host protein-protein interactions might become a potential target for novel anticandidal therapeutic approaches.
Źródło:
Acta Biochimica Polonica; 2016, 63, 3; 417-426
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cell wall proteome of pathogenic fungi
Autorzy:
Karkowska-Kuleta, Justyna
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1038959.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
proteomics
fungal pathogens
cell wall
Candida
Aspergillus
Cryptococcus
Opis:
A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.
Źródło:
Acta Biochimica Polonica; 2015, 62, 3; 339-351
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans
Autorzy:
Seweryn, Karolina
Karkowska-Kuleta, Justyna
Wolak, Natalia
Bochenska, Oliwia
Kedracka-Krok, Sylwia
Kozik, Andrzej
Rapala-Kozik, Maria
Powiązania:
https://bibliotekanauki.pl/articles/1038926.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
Candida albicans cell wall
candidiasis
contact system
surface plasmon resonance
Opis:
Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10-7 M order, and the association rate constants were in a range of 104-105 M-1s-1. The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.
Źródło:
Acta Biochimica Polonica; 2015, 62, 4; 825-835
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus
Autorzy:
Karkowska-Kuleta, Justyna
Rapala-Kozik, Maria
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1040555.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
cryptococcosis
virulence factors
aspergillosis
candidiasis
pathogenic fungi
Opis:
The frequency of severe systemic fungal diseases has increased in the last few decades. The clinical use of antibacterial drugs, immunosuppressive agents after organ transplantation, cancer chemotherapy, and advances in surgery are associated with increasing risk of fungal infections. Opportunistic pathogens from the genera Candida and Aspergillus as well as pathogenic fungi from the genus Cryptococcus can invade human organism and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. Nowadays, there are some effective antifungal agents, but, unfortunately, some of the pathogenic species show increasing resistance. The identification of fungal virulence factors and recognition of mechanisms of pathogenesis may lead to development of new efficient antifungal therapies. This review is focused on major virulence factors of the most common fungal pathogens of humans: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The adherence to host cells and tissues, secretion of hydrolytic enzymes, phenotypic switching and morphological dimorphism contribute to C. albicans virulence. The ability to grow at 37°C, capsule synthesis and melanin formation are important virulence factors of C. neoformans. The putative virulence factors of A. fumigatus include production of pigments, adhesion molecules present on the cell surface and secretion of hydrolytic enzymes and toxins.
Źródło:
Acta Biochimica Polonica; 2009, 56, 2; 211-224
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Binding of human plasminogen and high-molecular-mass kininogen by cell surface-exposed proteins of Candida parapsilosis
Autorzy:
Karkowska-Kuleta, Justyna
Zajac, Dorota
Bras, Grazyna
Bochenska, Oliwia
Rapala-Kozik, Maria
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1038573.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
candidiasis
cell wall proteins
fibrinolysis
contact system
Opis:
Pathogenic microbes can recruit to their cell surface human proteins that are components of important proteolytic cascades involved in coagulation, fibrinolysis and innate immune response. Once located at the bacterial or fungal surface, such deployed proteins might be utilized by pathogens to facilitate invasion and dissemination within the host organism by interfering with functionality of these systems or by exploiting specific activity of the bound enzymes. Aim of the study presented here was to characterize this phenomenon in Candida parapsilosis (Ashford) Langeron et Talice - an important causative agent of systemic fungal infections (candidiases and candidemias) in humans. We have investigated the interactions of fungal surface-exposed proteins with plasminogen (HPG) and high-molecular-mass kininogen (HK) - the crucial components of human fibrinolytic system and proinflammatory/procoagulant contact-activated kinin-forming system, respectively. After confirming ability of the fungal surface-exposed proteins to bind HPG and HK, four of them - two agglutinin-like sequence (Als) proteins CPAR2_404780 and CPAR2_404800, a heat shock protein Ssa2 and a moonlighting protein 6-phosphogluconate dehydrogenase 1 - were purified using ion-exchange chromatography, gel filtration and chromatofocusing. Then, their affinities to HPG and HK were characterized with surface plasmon resonance measurements. The determined dissociation constants for the investigated protein-protein complexes were within a 10-7 M order for the HPG binding and in a range of 10-8-10-9 M for the HK binding. Detailed characterization of adsorption of these two important plasma proteins on the fungal cell surface may help to increase our understanding of molecular mechanisms of C. parapsilosis-dependent candidiasis.
Źródło:
Acta Biochimica Polonica; 2017, 64, 3; 391-400
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of the interactions between human high-molecular-mass kininogen and cell wall proteins of pathogenic yeasts Candida tropicalis
Autorzy:
Karkowska-Kuleta, Justyna
Zajac, Dorota
Bras, Grazyna
Bochenska, Oliwia
Seweryn, Karolina
Kedracka-Krok, Sylwia
Jankowska, Urszula
Rapala-Kozik, Maria
Kozik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1038758.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
contact system
kinins
inflammation
candidiasis
cell wall proteins
adhesion
Opis:
Candida tropicalis is one of the most frequent causes of serious disseminated candidiasis in human patients infected by non-albicans Candida species, but still relatively little is known about its virulence mechanisms. In our current study, the interactions between the cell surface of this species and a multifunctional human protein - high-molecular-mass kininogen (HK), an important component of the plasma contact system involved in the development of the inflammatory state - were characterized at the molecular level. The quick release of biologically active kinins from candidal cell wall-adsorbed HK was presented and the HK-binding ability was assigned to several cell wall-associated proteins. The predicted hyphally regulated cell wall protein (Hyr) and some housekeeping enzymes exposed at the cell surface (known as "moonlighting proteins") were found to be the major HK binders. Accordingly, after purification of selected proteins, the dissociation constants of the complexes of HK with Hyr, enolase, and phosphoglycerate mutase were determined using surface plasmon resonance measurements, yielding the values of 2.20 × 10-7 M, 1.42 × 10-7 M, and 5.81 × 10-7 M, respectively. Therefore, in this work, for the first time, the interactions between C. tropicalis cell wall proteins and HK were characterized in molecular terms. Our findings may be useful for designing more effective prevention and treatment approaches against infections caused by this dangerous fungal pathogen.
Źródło:
Acta Biochimica Polonica; 2016, 63, 3; 427-436
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies