Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Model klas ukrytych" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Kryteria wyboru liczby skupień w binarnym modelu klas ukrytych – analiza symulacyjna
Criteria for Choosing the Number of Clusters of the Binary Latent Class Model – Simulation Analysis
Autorzy:
Kapłon, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1827225.pdf
Data publikacji:
2010-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
analiza klas ukrytych
liczba skupień
kryteria informacyjne
analiza symulacyjna
latent class analysis
the number of clusters
information criteria
simulations
Opis:
Wykorzystanie analizy klas ukrytych (LCA) wymaga przyjęcia a priori liczby klas. W celu rozstrzygnięcia, ile ma ich być, można wykorzystać kryteria informacyjne. Procedura selekcji sprowadza się do: szacowania kilku modeli o różnej liczbie klas, obliczenia wartości kryterium informacyjnego oraz wyboru modelu, dla którego odnotowano najmniejszą wartość tego kryterium. Ponieważ istnieje wiele kryteriów informacyjnych, więc należy zadecydować, które powinno rozstrzygać. Niestety, nie można jednoznacznie wskazać na konkretne kryterium, gdyż w zależności od klasy modelu, zmienia się ich wiarygodność. Taki wniosek wynika z badań symulacyjnych. Biorąc pod uwagę fakt, że najczęściej badania takie dotyczyły mieszanek rozkładów normalnych, dlatego celem niniejszego opracowania jest rozszerzenie tych badań o analizę klas ukrytych.
When using latent class analysis the number of clusters need to be known in advance. In order to decide on this, one can use information criteria. In such a case selection procedure is as follows: estimating a few models with different number of classes, computing information criteria and choosing a model for which a criterion takes the smallest value. Because there are many information criteria one need to determine which of them ought to be decisive. Unfortunately, by virtue of the differences among these criteria, their reliability alter depending on model class. Simulations confirm it as well. Taking into account the fact that simulations mainly concern finite mixtures of normal density functions, therefore in this paper we broaden research to latent class analysis.
Źródło:
Przegląd Statystyczny; 2010, 57, 1; 66-84
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies