Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gas fuels" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wodór a podziemne magazynowanie energii w strukturach solnych
Hydrogen and underground energy storage in the salt structures
Autorzy:
Kaliski, M.
Sikora, A.
Powiązania:
https://bibliotekanauki.pl/articles/2192146.pdf
Data publikacji:
2013
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
podziemne magazynowanie energii
wodór
kawerna solna
fossil fuels
hydrogen
underground gas storages
Opis:
The most abundant and common element in the Universe is hydrogen. Hydrogen is a prevailing chemical element throughout the Earth. It is present in molecule form in the atmosphere, in minimum quantities – traces, close to the Earth surface. Dominant component of the high layers of the atmosphere where is rare, diluted. 40% of the current world production comes from the process in which the hydrogen is a by-product of electrolysis, heavy chemistry (synthesis gas) or the refining of crude oil. Hydrogen is the cleanest source–carrier of energy. Major hydrogen markets are ammonia fertilizer production and conversion of heavy oil and coal into liquid fuels. There are few production methods but primary we can focus on stea • CH₄ + H₂O -> CO +3 H₂ • CO + H₂O-> CO₂ +H₂ Fossil fuels are burnt to provide the heat to drive the chemical process (let’s consider the role of the nuclear energy as well). Energy required to make hydrogen is dependent upon the feedstock. Natural gas – reduction of hydrogen in chemical way (the lowest energy input to make hydrogen); coal – hydrogen deficit; water (H₂O – oxidized hydrogen) There are many underground gas storages systems among the European Union countries. Especially salt caverns dedicated for hydrocarbon’s storage are widely described in the literature (e. g. Kaliski et al., 2010; Kunstman et al., 2009). There is still, unfortunately, no experience with hydrogen storage in Poland. And the EU hydrocarbons salt caverns have only the UK, France (including hydrogen storage), Germany, Denmark, Portugal and Poland (Gillhaus, 2008). Dedicated programme for hydrogen storage was implemented in the EU in 2002 called “Towards a European Hydrogen Energy Roadmap Preface to HyWays – the European Hydrogen Energy Roadmap Integrated Project” (more information can be found on www.HyNet.info). There is a new research programme in the field of transmission and storage of the hydrogen for energy purposes currently held in Germany. The total length of the hydrogen gas in Europe is about 1500 km. But still, there is no experience with hydrogen storage as an energy source for energy sector. The best carrier of energy. A key issue facing researchers is the use of technology of hydrogen for storage of energy and construction of salt caverns which will meet safety requirements regarding tightness and stability. One should consider that: • construction of the caverns is determined by the ability of the use of the brine; • caverns (geological structures) must comply with the integrity and stability; • such energy warehouses should be located close to the potential end user of hydrogen and electricity network (infrastructure is a key). The next several years perspective shows that, the emergence of underground cavern storage of any surplus energy in the form of hydrogen would have the following environmental benefits: a) storage of surplus of such energy and its subsequent recovery in an environmentally cleaner process - without the additional emission’s issues, b) ecological safety of underground storage of energy, similar to the existing underground gas storage facilities, oil and fuel, c) underground storage efficiency and eco-friendly much higher when compared to systems hydroelectric pumped storage, d) better technically and economically feasible - to use periodic overcapacity power plants and the related real decrease in CO2 emissions, e) easier integration in the energy system of large wind and solar energy farms, reducing potential problems with a large share of RES in the energy balance of the country, f) limitation of conventional combustion of fossil fuel, g) hydrogen is the cleanest source of energy, h) enable the development of fuel cell (hydrogen) in the automotive industry, the decrease of emissions, i) to dispose of CO2 by the use of hydrogen and CO2 to eventually methane production in upstream projects. Let’s imagine for a moment a project that combines: • hydrogen production by electrolysis using excess wind power and solar energy to produce it; • optimize the demand for hydrogen in chemical processes also by its storage in salt caverns; • hydrogen storage processes resulting in refinery and petrochemical plants and possibly by electrolysis of surplus energy generated in non-conventional and renewable power. The future of interim storage of surplus energy may lie in underground caverns leached (leached) in salt deposits, which can be stored as compressed air (Compressed Air Energy System) or hydrogen. We are aware and we are positive that the subject is not easy, but we also believe that this fuel of the future - hydrogen – is going to turn of the centuries: XXI and XXII. That is why today we need to outline our descendants. New generations of these lines of energy development that will allow Humanity to become a Galactic Energy Society.
Źródło:
Przegląd Solny; 2013, 9; 26--32
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rynek LNG w Europie a niekonwencjonalne źródła gazu ziemnego
Europes LNG market versus unconventional natural gas sources
Autorzy:
Kaliski, M.
Krupa, M.
Sikora, A.
Powiązania:
https://bibliotekanauki.pl/articles/300198.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
LNG
niekonwencjonalne źródła gazu
wzrost popytu
podaż
bezpieczeństwo energetyczne
Polska
Rosja
Unia Europejska
rynek amerykański
gaz ziemny
dostawy
surowce energetyczne
scenariusze
terminal
gazoport
unconventional natural gas sources
demand increase
supply
energy security
Polska
Russia
European Union
American market
natural gas
energy mix
energy sources
fossil fuels
scenario
hub
Opis:
Rola gazu ziemnego jako surowca energetycznego rośnie na świecie bardzo gwałtownie. Od jesieni 2008 r. światowa równowaga podaży i popytu zmieniła się znacząco, szczególnie na rynku amerykańskim. Do niedawna prognozy wskazywały na to, że przyszły potencjał popytu LNG w stosunku do szacowanych wielkości podaży tego surowca na rynkach światowych będzie wyższy o około 35 mld m3. Najbardziej konkurencyjnym regionem miał być "Rynek Oceanu Atlantyckiego" gdzie przewidywano dostępną podaż na ok. 150-160 mld m3 gazu ziemnego w formie ciekłej a potencjał popytu miał osiągnąć poziom nawet 225-230 mld m3 gazu ziemnego. W takich okolicznościach Europa mogłaby "w rzeczywistości" kupić maksymalnie 80-90 mld m3 gazu ziemnego w formie LNG bez przepłacania za ten rodzaj surowca. Ostatnie informacje wskazują na możliwość wzrostu znaczenia wydobycia gazu z pokładów węgla (coal bed methane), gazu z łupków bitumicznych (shale gas) oraz gazu uwięzionego w izolowanych porach skalnych (tight gas) w Szwecji, Polsce i Niemczech. Wzrost produkcji gazu ze źródeł niekonwencjonalnych w następnej dekadzie zmieni sytuację rynkową. Podczas gdy sytuacja na rynku LNG już się zmieniła, bo pojawiają się czynniki, które będą mieć dodatkowy wpływ na rynek LNG. W artykule omówiono bilans gazu łącznie z LNG dla rynku europejskiego i zwrócono uwagę na możliwy wpływ przyszłej produkcji z niekonwencjonalnych źródeł.
The role of natural gas in the world's energy supply is growing rapidly. Since the autumn of 2008, the global LNG supply/demand balance has changed dramatically especially in the US. Forecasts showed, that in the future potential world demand for LNG will be higher then supply over about 35 bln m3. The most competitive region will be "Atlantic Ocean market" where there is estimation for available supply for ca. 150-160 bln m3 natural gas in liquid form and potential demand which will reach the level of even 225-230 bln m3 natural gas. In such circumstances Europe could "in reality" buy max. 80-90 bln m3 natural gas in LNG form without additional overpayment for such commodity. Recent announcements evaluate increase of the CBM, "tight sand gas" and "shale gas" production to 2020 by major players i.e. Sweden, Poland and Germany. These new players could or will ensure shale gas production growth in the next decade. Marekt situation is developing rapidly. While the LNG situation is changing dramatically and there are the factors which are additionally expected to the great influence on the LNG market. Authors discuss the LNG balance for the European market. Article focuses on possible influence of unconventional gas in Europe which will be evaluated together with LNG supply/ demand balance.
Źródło:
Wiertnictwo, Nafta, Gaz; 2010, 27, 1--2; 207-215
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies