Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Akpensuen, Shiaondo Henry" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Modeling the Impact of Agriculture, Export Earnings and Inflation on Gross Domestic Product Using the Generalized Least Square (GLS) Approach
Autorzy:
Akpensuen, Shiaondo Henry
Joel, Simon
Alhaji, Abdullahi Gwani
Powiązania:
https://bibliotekanauki.pl/articles/1059403.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Agriculture
Export Earnings
Gross Domestic Product (GDP)
Inflation
Opis:
The paper explored the impact of Agriculture, export earnings and inflation on gross domestic product (GDP). Time series data were obtained from the central bank of Nigeria statistical bulletin from 1981 to 2018. Each series consist of 38 observations. Evidence from our study showed that the predictor variables (Agriculture, export earnings and inflation) were significantly joint predictors of Gross Domestic Product. The predictor variables jointly explained 68.958% of GDP. Result of the analysis also revealed that both agriculture and export earnings have a positive impact on gross domestic product reaffirming the importance of the sectors to economic growth while inflation has a negative impact on gross domestic product. With evidence that agriculture has the potential to cause economic growth, spur industrialization as well as to enhance the living condition of the nation’s majority, there should be increased investment in the development of the sector. This study also revealed that inflation is detrimental to sustainable economic growth in Nigeria. The result has important policy implications for both domestic policy makers and development partners. It also implies that controlling inflation is a necessary condition for promoting economic growth. Thus, policy makers should focus on maintaining inflation at a low rate probably single digit.
Źródło:
World Scientific News; 2019, 134, 2; 326-334
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time Series ARIMA Model for Predicting Nigeria Net Foreign Direct Investment (FDI)
Autorzy:
Akpensuen, Shiaondo Henry
Edeghagba, Eghosa Elijah
Alhaji, Abdullahi Gwani
Joel, Simon
Powiązania:
https://bibliotekanauki.pl/articles/1059523.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
ADF
ARIMA
Forecasting
Foreign Direct Investment
Nigeria
Opis:
This paper presents an empirical study of modelling and forecasting time series data of Nigeria net foreign direct investment (FDI). The Box-Jenkins ARIMA methodology was used for forecasting the yearly data collected from 1972 to 2018. Result of the analysis revealed that the series became stationary at first difference. The diagnostic checking has shown that ARIMA (1, 1, 2) is appropriate or optimal model based on the Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC) and Hannan Quinn criterion (HQ). A twenty (20) year forecast was made from 2019-2039, the result of the forecast showed that the net FDI in Nigeria will continue to grow in the period forecasted. These forecasts will help policy makers in Nigeria to sustain their efforts to expand the tax base, reduce red tape, and strengthen the regulatory framework to investment and also investors friendly policies in order to attract the much needed FDI.
Źródło:
World Scientific News; 2019, 128, 2; 348-362
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies