Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pca" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A cough-based COVID-19 detection system using PCA and machine learning classifiers
Autorzy:
Benmalek, Elmehdi
Mhamdi, Jamal El
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/38431179.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
COVID-19
cough recordings
machine learning
PCA
classification
Opis:
In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we per-formed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients.
Źródło:
Applied Computer Science; 2022, 18, 4; 96-115
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of cardiovascular diseases using dysphonia measurement in speech
Autorzy:
Bourouhou, Abdelhamid
Jilbab, Abdelilah
Nacir, Chafik
Hammouch, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/1840881.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
cardiovascular disease
speech analysis
dysphonia measurement
classification methods
PCA features selection
choroba układu krążenia
analiza mowy
dysfonia
pomiar
metody klasyfikacji
selekcja cech
Opis:
Cardiovascular disease is the leading cause of death worldwide. The diagnosis is made by non-invasive methods, but it is far from being comfortable, rapid, and accessible to everyone. Speech analysis is an emerging non-invasive diagnostic tool, and a lot of researches have shown that it is efficient in speech recognition and in detecting Parkinson's disease, so can it be effective for differentiating between patients with cardiovascular disease and healthy people? This present work answers the question posed, by collecting a database of 75 people, 35 of whom suffering from cardiovascular diseases, and 40 are healthy. We took from each one three vocal recordings of sustained vowels (aaaaa…, ooooo… .. and iiiiiiii… ..). By measuring dysphonia in speech, we were able to extract 26 features, with which we will train three types of classifiers: the k-near-neighbor, the support vectors machine classifier, and the naive Bayes classifier. The methods were tested for accuracy and stability, and we obtained 81% accuracy as the best result using the k-near-neighbor classifier.
Źródło:
Diagnostyka; 2021, 22, 1; 31-37
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies