- Tytuł:
-
Właściwości wewnątrzcząsteczkowych wiązań wodorowych w wybranych N-tlenkach pochodnych chinoliny
Intramolecular hydrogen bonds properties in selected N-oxides of quinoline derivatives - Autorzy:
-
Jezierska, Aneta
Panek, Jarosław J.
Błaziak, Kacper - Powiązania:
- https://bibliotekanauki.pl/articles/171511.pdf
- Data publikacji:
- 2019
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
DFT
teoria funkcjonału gęstości
MP2
metoda rachunku zaburzeń drugiego rzędu Møllera-Plesseta
CPMD
dynamika molekularna Cara-Parrinello
wewnątrzcząsteczkowe wiązanie wodorowe
N-tlenki pochodnych chinoliny
density functional theory
Møller-Plesset second order perturbation method
Car-Parrinello molecular dynamics
intramolecular HB
N-oxides of quinoline derivatives - Opis:
- In the current article we would like to summarize our research shedding light onto properties of intramolecular hydrogen bonds present in N-oxide quinoline derivatives. The compounds for the current study were chosen to contain diverse types of hydrogen bonds. Therefore, in the current study we analyze three kinds of hydrogen bonding and their properties. It is well known, that the presence of intramolecular hydrogen bonds stabilizes conformations of molecules. Substituent effects (inductive and steric) influence the strength of the H-bonding as well as its features. Moreover, the intramolecular hydrogen bond in the studied N-oxides belongs to the family of resonance assisted hydrogen bonds (RAHB). Our short overview presents the summary of results obtained for twelve N-oxides of quinoline derivatives. Quantum-chemical simulations were performed on the basis of static models (classical DFT and MP2 approaches) as well as ab initio molecular dynamics (Car-Parrinello MD). The metadynamics method was applied to reproduce the maps of free energy for the motion of the bridged proton. The computations were performed in the gas and in the crystalline phases. Electronic ground state is a natural framework in which chemical compounds exist most of the time. However, in many chemical species we observe a spontaneous internal reorganization of their chemical bonds and atoms e.g. proton transfer phenomenon and the appearance of tautomeric forms already in the ground state. Therefore, it was interesting to investigate some N-oxides in the excited electron state knowing that they exhibit excited- state-induced proton transfer (ESIPT effect). At the end of the article we draw some conclusions related to the intramolecular H-bond properties present in the discussed N-oxides of quinoline derivatives.
- Źródło:
-
Wiadomości Chemiczne; 2019, 73, 1-2; 75-95
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki