Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analiza surowców" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Visualization of multidimensional data in purpose of qualitative classification of various types of coal
Wizualizacja wielowymiarowych danych w celu klasyfikacji jakościowej różnych typów węgla
Autorzy:
Niedoba, T.
Jamróz, D.
Powiązania:
https://bibliotekanauki.pl/articles/218760.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza wielowymiarowa
tunele obserwacyjne
osie równoległe
węgiel
przeróbka surowców mineralnych
energia z węgla
multidimensional analysis
observational tunnels
parallel coordinates
coal
mineral processing
coal energy
Opis:
Coal as energetic raw material features by many parameters determining its quality. In classification of coal types there are many of them with typical division of energetic, semi-coking and coking coal. The data concerning coal are usually treated as independent values while this kind of approach is not always right. Authors proposed new solutions in this aspect and performed the multidimensional analysis of three selected types of coal featuring by various properties which originated from three various hard coal mines located in Upper Silesia Region. The object of the research was so-called raw coal which was not processed before. For each type of coal the detailed statistical analysis of seven chosen properties of coal was performed. To perform adequate and complete statistical analysis it is necessary to analyze the chosen properties of coal together in multidimensional way. It was decided to apply new and modern visualizing methods of multidimensional data which were observational tunnels method and parallel coordinates method. The applied methods allowed to obtain visualization of seven-dimensional data describing coal. By means of these visualizations it was possible to observe the significant division of the features space between researched types of coal. These methods allowed to look at the investigated data from various perspectives and make possible to determine significant differences between researched materials. For the investigated coals such differences were determined clearly what proved that by means of these methods it is possible to successfully identify type of coal as well to analyze in details its individual properties and identify, for example, particle size fraction etc. The obtained results are innovative and are the basis for more detailed researches taking into consideration also other coal properties, including its structure and texture. This methodology can be also applied successfully for other types of raw materials, like ores.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być (charakteryzują się) charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o kierunkach charakteryzowania wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być: - wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba & Surowiak, 2012); - wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013); - analiza czynnikowa (Tumidajski & Saramak, 2009); - inne metody, w tym wizualizacja metodą tuneli obserwacyjnych (Jamróz, 2001), osi równoległych oraz wizualizacja zależności pomiędzy wielowymiarowymi bryłami (Jamróz, 2009). Wielowymiarowe rozkłady wektora X traktowanego jako wektor losowy, mają już swoją bogatą literaturę i praktyczne ich zastosowanie i nie będą przedmiotem tej publikacji. Pozostałe metody są ze sobą w pewien sposób powiązane, co skrótowo zostało przedstawione w artykule. Macierze współczynników korelacji liniowej i współczynników korelacji cząstkowej są związane, z reguły, z istniejącymi modelami liniowymi zależności występujących między badanymi zmiennymi wektora X. Współczynniki korelacji liniowej są wyznaczane dla par zmiennych losowych całkowicie niezależnie od pozostałych zmiennych. Cząstkowe współczynniki korelacji liniowej wyznaczane są w oparciu o macierz współczynniki korelacji liniowej z uwzględnieniem roli pozostałych zmiennych w rozważanym równaniu regresji liniowej. W przypadku analizy trzech zmiennych losowych, z których jedna jest traktowana jako zmienna zależna a dwie pozostałe jako niezależne sprowadza się to do wyznaczania współczynników korelacji dla zrzutowanych punktów równolegle do płaszczyzny regresji na ściany układu współrzędnych. Pozwala to wyznaczyć hierarchię (siłę wpływu) zależności zmiennych w rozpatrywanym układzie. Na analizie macierzy współczynników korelacji liniowej oparta jest analiza czynnikowa, która pozwala pogrupować występujące zmienne w tzw. czynniki, które reprezentują połączone wpływy zmiennych na rezultaty rozpatrywanych procesów, czyli przeprowadzić pewną klasyfikację zmiennych. W klasyfikacji typów węgli wyróżnia się wiele typów, z umownym podziałem na węgle energetyczne i koksujące. Dane dotyczące węgla są traktowane zwykle jako niezależne wielkości, przy czym takie podejście nie zawsze jest właściwe. Autorzy zaproponowali nowe rozwiązania w tym zakresie i dokonali wielowymiarowej analizy trzech wybranych typów węgla o różnych właściwościach (węgle typu 31, 34.2 oraz 35), które pochodziły z trzech różnych kopalń zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Obiektem badań w każdej z tych kopalń był tzw. węgiel surowy, nie poddawany procesom przeróbczym. Dla każdego z węgli dokonano szczegółowej analizy wybranych siedmiu cech, opisujących jego właściwości, których przykładowe wyniki zostały zaprezentowane w tabelach 1-3. Aby dokonać adekwatnej i dokładnej analizy statystycznej zebranych danych konieczna jest wielowymiarowa analiza wybranych cech węgla łącznie. Zdecydowano się na zastosowanie nowatorskich metod wizualizacji wielowymiarowych danych, którymi były metoda tuneli obserwacyjnych oraz metoda osi równoległych. Zasady i metodyka badań zostały przedstawione w podrozdziałach 2 i 3. Zastosowane metody umożliwiły uzyskanie wizualizacji siedmiowymiarowych danych opisujących węgiel. Za pomocą tych wizualizacji możliwe jest zaobserwowanie wyraźnego podziału przestrzeni cech pomiędzy badanymi typami węgla. Metody te umożliwiły spojrzenie na badane dane z różnych perspektyw, które pozwalają na stwierdzenie zasadniczych różnic badanych materiałów. Dla badanych węgli stwierdzono wyraźne takie różnice co świadczy o tym, że za pomocą proponowanych metod możliwa jest skuteczna identyfikacja typu węgla, jak również dokładniejsza analiza jego poszczególnych cech i identyfikacja np. klasy ziarnowej. Szczegółowe obrazy i ich interpretacja zostały przedstawione w rozdziale 3 i we wnioskach końcowych. Rysunki 3-5 obrazują różnice pomiędzy poszczególnymi typami węgla otrzymane metodą tuneli obserwacyjnych. Wyraźnie można rozgraniczyć próbki dotyczące poszczególnych węgli a tym samym możliwa jest identyfikacja typu węgla na podstawie wielowymiarowej analizy. Rysunki 6-7 pokazują zastosowanie innej metody wielowymiarowej, którą była metoda osi równoległych. Metoda ta okazała się być skuteczna do uzyskania informacji o konieczności przeskalowania poszczególnych cech, w celu uzyskania bardziejczytelnych rezultatów. Natomiast rysunek 10 pokazuje różnice otrzymane metodą tuneli obserwacyjnych pomiędzy charakterystykami konkretnych klas ziarnowych wybranego materiału, którym w tym przypadku był węgiel typu 31. Uzyskane wyniki i zastosowana metodyka są nowatorskie i stanowią bazę pod bardziej szczegółowe badania, biorące pod uwagę także inne charakterystyki węgli, w tym ich strukturę i teksturę. Za pomocą przedstawionych metod możliwe jest stwierdzenie, czy wybrane cechy są wystarczające do identyfikacji zarówno typu węgla, jak również klasy ziarnowej i innych jego cech. Metodyka ta może być również stosowana z powodzeniem dla innych typów surowców mineralnych, np. dla rud.
Źródło:
Archives of Mining Sciences; 2013, 58, 4; 1317-1331
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies