Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "green moulding sands" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Ann modelling for the analysis of the green moulding sands properties
Analiza właściwości syntetycznych mas formierskich z zastosowaniem sztucznych sieci neuronowych
Autorzy:
Jakubski, J.
Malinowski, P.
Dobosz, S. M.
Major-Gabryś, K.
Powiązania:
https://bibliotekanauki.pl/articles/356980.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
data mining
artificial neural networks
green moulding sands
sztuczne sieci neuronowe
syntetyczne masy formierskie
Opis:
Application of modern technological solutions, as well as the economic and ecological solutions, is for foundries one of the main aspects of the competitiveness on the market for castings. IT solutions can significantly support technological processes. This article presents neural networks with different structures that have been used to determine the moisture content of the moulding sand based on the moulding sand selected properties research results. Neural networks were built using Matlab software. Moulding sand properties chosen for quality control processes were selected based on wide previous results. For the proposed moulding sand properties, neural networks can be a useful tool for predicting moisture content. The structure of artificial neural network do not have a significant influence on the obtained results. In subsequent studies on the use of neural networks as an application to support the green moulding sand rebonding process, it must be determined how factors such as environmental humidity and moulding sand temperature will affect the accuracy of data obtained with the use of artificial neural networks.
Zastosowanie nowoczesnych rozwiązań technologicznych, a także ekonomicznych i ekologicznych stanowi dla odlewni jeden z głównych aspektów konkurencyjności na rynku produktów odlewów. Doskonałym wsparciem dla procesów technologicznych są rozwiązania informatyczne. W artykule zaprezentowano sieci neuronowych o różnej strukturze, które zostały użyte do określania wilgotności masy formierskiej na podstawie wyników badania wybranych właściwości masy. Sieci neuronowe zbudowano z wykorzystaniem oprogramowania Matlab. Właściwości mas wybrane do procesów sterowania jakością zostały dobrane w oparciu o wcześniejsze wyniki badań. Dla zaproponowanych właściwości syntetycznych mas formierskich sztuczne sieci neuronowe mogą być użytecznym narzędziem do przewidywania wilgotności masy. Ilość warstw ukrytych w strukturze sieci nie ma wpływu na otrzymywane rezultaty. W kolejnych badaniach nad wykorzystaniem sieci neuronowych jako aplikacji wspierającej procesy odświeżania syntetycznych mas formierskich, należy okreslić, w jaki sposób czynniki takie jak wilgotność otoczenia, czy temperatura masy wpłyną na dokładność danych uzyskanych z wykorzystaniem sztucznych sieci neuronowych.
Źródło:
Archives of Metallurgy and Materials; 2013, 58, 3; 961-963
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of changes in active binder content on the control system of the moulding sand quality
Autorzy:
Jakubski, J.
Dobosz, S. M.
Major-Gabryś, K.
Powiązania:
https://bibliotekanauki.pl/articles/380300.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zarządzanie jakością
masa formierska
sztuczna sieć neuronowa
quality management
green moulding sands
artificial neural networks
Opis:
Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.
Źródło:
Archives of Foundry Engineering; 2012, 12, 4; 71-74
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of the training set value on the quality of the neural network to identify selected moulding sand properties
Autorzy:
Jakubski, J.
Dobosz, S. M.
Major-Gabryś, K.
Powiązania:
https://bibliotekanauki.pl/articles/381338.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
quality management
green moulding sands
neural network
technologia informacyjna
przemysł odlewniczy
zarządzanie jakością
masa formierska
sieć neuronowa
Opis:
Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. This paper presents the next part of the study on usefulness of artificial neural networks to support rebonding of green moulding sand, using chosen properties of moulding sands, which can be determined fast. The effect of changes in the training set quantity on the quality of the network is presented in this article. It has been shown that a small change in the data set would change the quality of the network, and may also make it necessary to change the type of network in order to obtain good results.
Źródło:
Archives of Foundry Engineering; 2013, 13, 2; 49-52
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies