Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "makulatura" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Wpływ rozdrobnienia makulatury oraz odpadów kuchennych na wydajność procesu fermentacji metanowej
Influence of paper waste and kitchen waste size reduction on the yield of digestion process
Autorzy:
Jędrczak, A.
Królik, D.
Powiązania:
https://bibliotekanauki.pl/articles/1819595.pdf
Data publikacji:
2011
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
odpady kuchenne
makulatura
fermentacja metanowa
kitchen waste
waste
methane fermentation
Opis:
O prawidłowym przebiegu fermentacji decydują: rodzaj substratu, obecność odpowiednich populacji mikroorganizmów oraz parametry środowiskowe, wpływające na ich aktywność i szybkość przemian. W literaturze obszernie opisano wpływ na efektywność procesu fermentacji parametrów takich, jak: pH, temperatura, obciążenie komór ładunkiem organicznym i czas fermentacji oraz stężenia składników pokarmowych i związków toksycznych zarówno dla procesów "mokrych" i "suchych", jak i przebiegających w układach jedno- lub w dwustopniowych, w sposób ciągły lub okresowy [1, 2, 4÷7]. Informacje o wpływie na przebieg fermentacji wymiarów cząsteczek odpadów są dotychczas nieliczne i stosunkowo skąpe. Wiadomo jedynie, że zmniejszenie rozmiarów cząstek i wynikające stąd zwiększenie ich powierzchni właściwej powoduje wzrost szybkości hydrolizy, pierwszego etapu fermentacji odpadów organicznych [3]. Efektem jest zwiększenie produkcji gazu, zwłaszcza w przypadku fermentacji substratów o wysokiej zawartości materiałów o niskiej podatności na rozkład biologiczny. Według Palmowskiego i Müllera [8] w przypadku małych cząstek, o powierzchni właściwej większej niż 20 m2/kg wpływ ten jest niewielki, rośnie natomiast gwałtownie przy rozdrabnianiu cząstek dużych, o powierzchni właściwej od 3 do 20 m2/kg. Wzrost szybkości produkcji gazu prowadzi do skrócenia czasu fermentacji, co stwarza możliwość zmniejszenia wielkości komory bez strat w produkcji gazu. Negatywnym efektem rozdrobnienia cząstek jest wzrost oporu właściwego przefermentowanych odpadów. W artykule przedstawiono wpływ stopnia rozdrobnienia makulatury i odpadów kuchennych na wydajność procesu fermentacji metanowej prowadzonej w mezo- i termofilowym zakresie temperatury. Odpady objęte badaniami są głównymi ulegającymi biodegradacji składnikami odpadów komunalnych, o różnej podatności na biologiczny rozkład. Według Imhoffa [4] jednostkowa produkcja biogazu (JPB) z makulatury w procesach mezofilowych wynosi 220 dm3/kg sm (260 m3/kg smo) przy zawartości metanu 63% (v/v). JPB z odpadów kuchennych (pozostałości owoców i warzyw) wynosi od 350 do 500 dm3/kg smo przy zawartości metanu w gazie 60÷75% [ub od 400 do 700 dm3/kg smo przy zawartości metanu 58-65 %.
The hydrolysis of polymers which are difficult to decompose, such as cellulose, lignin, and even decomposable fats, proteins and carbohydrates, is generally considered as a step limiting the fermentation of solid wastes. Reduction of size of molecules and increasing specific surface area available for microbial may improve the speed and efficiency of gas production during the fermentation. The article presents the effects of granulation of paper and kitchen waste for efficiency of methane fermentation in thermophilic and mesophilic environment. The study was performed in a laboratory scale. Wastes were divided into five different grain sizes. During the mesophilic fermentation of paper the highest biogas production unit (JPB) was obtained for samples with a maximum reduction of grain size P-2 (538 dm?/kg VS), and lowest for the largest sample size P-6 (337 dm?/kg VS). Unit production of methane (JPM) ranged from 231 dm?/kg VS (P-2) to 144 dm?/kg VS (P-5). During thermophilic fermentation, JPB also achieved the highest value for the sample P-2 (592 dm?/kg VS), and lowest for P-6 (367 dm?/kg VS). JPM ranged from 273 dm?/kg VS (P-2) to 149 dm?/kg VS (P-6). Mesophilic fermentation of kitchen waste with the smallest grain size showed maximum JPB amounted to 808 dm?/kg VS, during the thermophilic fermentation of 791 dm?/kg VS (Fig. 5). With the increasing grain size of samples JPB decreased to 757 dm?/kg VS (P-6) in mesophilic fermentation and to 768 dm?/kg VS (P-3) and 771 dm?/kg VS (P-6). JPM from maximum fragmentated samples (P-2) was 330 dm?/kg VS during the mesophilic fermentation and 375 dm?/kg VS during thermophilic fermentation. It decreased with increasing grain size of waste up to 273 dm?/kg VS (P-5) during the mesophilic fermentation and to 337 dm?/kg VS (P-6) in thermophilic process. JPB of paper during mesophilic fermentation was from 1.2 (P-5 and P-6) to 1.9 (P-2) times higher than the value given by Imhoff in relation to dry matter and respectively from 1.3 to 2.1 times higher in relation to the dry organic matter [4]. Unfortunately received gas was much poorer in methane production. JPB of paper accounted from 80% (P-5) to 130% (P-2) values specified by Imhoff in relation to dry matter and 90% (P-5) to 140% (P-2) values referred to the dry organic matter. For paper both JPB and JPM increased linearly with the decrease of grain replacement diameter in experiments conducted in mesphilic and thermophilic range of temperatures. The coefficients of determination for most relationships were very high. For paper ranged from 0.93 to 1.00, and for kitchen waste from 0.66 to 0.98. Fermentation of kitchen waste shoved that impact of fragmentation on the JPB and JPM was negligible compared to the paper. The studies confirm the positive effect of fragmentation of organic solid waste which are hardly decomposable (paper) for their biodegradability under anaerobic conditions. Biogas production increased almost linearly with decreasing replacement grain diameter for both types of fermentation. Methane fermentation of difficult degradable waste (paper) their fragmentation is reasonable but it's showed no practical importance for the easily biodegradable waste. Fragmentation of wastes hardly biodegradable provides greater amounts of produced biogas and obtain a smaller mass of solid waste after fermentation.
Źródło:
Rocznik Ochrona Środowiska; 2011, Tom 13; 619-634
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies