- Tytuł:
- Nonparametric methods of supervised classification
- Autorzy:
- Jóźwik, A.
- Powiązania:
- https://bibliotekanauki.pl/articles/333226.pdf
- Data publikacji:
- 2013
- Wydawca:
- Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
- Tematy:
-
pattern recognition
feature selection
k-NN rules
pair-wise classifier
artificial features
linear classifier
reference set size reduction
rozpoznawanie wzorca
wybór funkcji
reguła k-NN
sztuczne cechy
klasyfikator liniowy - Opis:
- Selected nonparametric methods of statistical pattern recognition are described. A part of them form modifications of the well known k-NN rule. To this group of the presented methods belong: a fuzzy k-NN rule, a pair-wise k-NN rule and a corrected k-NN rule. They can improve classification quality as compared with the standard k-NN rule. For the cases when these modifications would offer to large error rates an approach based on class areas determination is proposed. The idea of class areas can be also used for construction of the multistage classifier. A separate feature selection can be performed in each stage. The modifications of the k-NN rule and the methods based on determination class areas can be too slow in some applications, therefore algorithms for reference set reduction and condensation, for simple NN rule, are proposed. To construct fast classifiers it is worth to consider also a pair-wise linear classifiers. The presented idea can be used as in the case when the class pairs are linearly separable as well as in the contrary case.
- Źródło:
-
Journal of Medical Informatics & Technologies; 2013, 22; 21-32
1642-6037 - Pojawia się w:
- Journal of Medical Informatics & Technologies
- Dostawca treści:
- Biblioteka Nauki