Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Poplawska, A." wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Wymiana kationowa w środowisku kwaśnym wybranych pierwiastków na powierzchni sorbentów wytworzonych na bazie modyfikowanego węgla brunatnego
Selected elements cations exchange in acidic medium on sorbents Surface based on modified brown coal
Autorzy:
Stempkowska, A.
Izak, P.
Mastalska-Popławska, J.
Powiązania:
https://bibliotekanauki.pl/articles/216940.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wymiana kationowa
sorpcja
węgiel brunatny
cation exchange
sorption
brown coal
Opis:
Przeprowadzono badania sorpcji i desorpcji wybranych kationów Na+, Ca2+, Mg2+, Mn2+, Cu2+, Cr3+, przez materiały wytworzone na bazie węgla brunatnego. Modyfikacja chemiczna materiału sorbentowego polegała na rozdrobnieniu z udziałem różnych związków nieorganicznych w tym z polimerami organicznymi. Próbki po modyfikacji chemicznej poddano działaniu podwyższonej temperatury przez kilka godzin. W celach porównawczych przeanalizowano także próbki surowego węgla brunatnego bez i po oczyszczeniu, bowiem wyseparowane czyste kwasy huminowe z węgla brunatnego są znane z największej kationowej pojemności wymiennej. Pojemność jonową określano w warunkach statycznych, mierząc różnicę stężenia kationów w sorbacie przed i po sorpcji (etap I), a następnie po przemyciu sorbentu (etap II) wodą destylowaną (A), oraz po procesie desorpcji kwasem solnym (B). Badania wykazały, że sorbenty na bazie zmodyfikowanego węgla brunatnego wykazały dość znaczne pojemności wymienne w granicach od 270−450 meq/100 g, w przypadku etapu pierwszego, i od 90−200 meq/100 g w przypadku etapu drugiego. Stwierdzono także, że najwyższą pojemność wymienną posiada oczyszczony kwas huminowy 450/200 meq/100 g, a najniższą modyfikat węgla brunatnego otrzymany w temperaturze 250°C. Pomiary desorpcji wykazały, że około 10% kationów jest wymywanych przez wodę destylowaną, pozostałość desorbuje się pod wpływem 10% kwasu solnego, jednakże suma kationów jest zgodna z pomiarem etapu drugiego. Powinowactwo sorpcyjne względem poszczególnych kationów jest różne. W przypadku pomiarów różnicy stężeń sorbenty modyfikowane wykazują najwyższe powinowactwo sorpcyjne względem wapnia, natomiast niemodyfikowany surowy węgiel brunatny względem chromu. Badania desorpcji wykazały, że najwyższy wpływ na powinowactwo sorpcyjne ma wartościowość kationu.
Studies on the sorption and desorption of selected Na+, Ca2+, Mg2+, Mn2+, Cu2+ and Cr3+ cations by materials based on modified brown coal were carried out. The chemical modification of the sorbent material consisted of grinding involving different inorganic substances and organic polymers. Samples were subjected to chemical modification at elevated temperatures for several hours. For comparative purposes, as apart from brown coal, pure humic acids are known for the highest cations exchange capacity, samples of brown coal before and after purification were also analyzed. The ion capacity was determined under static conditions, measuring the difference in the concentration of cations in the sorbent before and after sorption and then after rinsing the sorbent with distilled water (A), and after the desorption process with hydrochloric acid (B). Studies have shown that sorbents based on modified brown coal have rather significant exchange capacities in the range of 270−450 meq/100 g for the first stage and 90−200 meq/100 g for the second stage. It was also found that purified humic acid (450−200 meq/100 g) has the highest exchange capacity and modified brown coal obtained at 250°C has the lowest. T he measurement of desorption showed that approximately 10% of the cations are already leached by distilled water and the residue is desorbed under the influence of 10% hydrochloric acid, but the total amount of cations is compatible with the measurement process of the second stage. The sorption affinity to various cations is different. In the case of the sorption measurements, modified sorbents show the highest sorption affinity with respect to calcium, while the unmodified raw brown coal with respect to chromium. The next stage of the measurement showed that the valence of the cation has the highest impact on the sorption affinity.
Źródło:
Gospodarka Surowcami Mineralnymi; 2017, 33, 1; 139-149
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanizm działania aerozolu gaśniczego
Mechanism of Fire-extinguishing Aerosol’s Action
Autorzy:
Izak, P.
Kidoń, A.
Mastalska-Popławska, J.
Powiązania:
https://bibliotekanauki.pl/articles/373967.pdf
Data publikacji:
2017
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
reakcje spalania
inhibitory palenia
aktywne rodniki wody
środki gaśnicze
aerozol gaśniczy
ochrona pożarowa eksponatów muzealnych
combustion reactions
fire retardants
active radicals of water
extinguishing agents
fire-extinguishing aerosol
fire protection of museum exhibits
Opis:
Cel: Celem artykułu jest dyskusyjne omówienie reakcji fizykochemicznych zachodzących w trakcie pożaru oraz przedstawienie mechanizmu działania inhibitorów palenia stosowanych w aerozolowych środkach gaśniczych. W artykule opisano również wyniki badań wpływu aerozolu gaśniczego na przedmioty muzealne. Wprowadzenie: Zazwyczaj w środkach gaśniczych wykorzystywany jest jeden z dwóch mechanizmów działania – obniżenie temperatury źródła pożaru (np. poprzez zastosowanie wody, proszków) albo odcięcie dostępu tlenu lub znaczne obniżenie jego ilości (np. za pomocą pian gaśniczych, z wyjątkiem tzw. gazów chlorowcopochodnych). Jednak w przypadku aerozoli gaśniczych zasada działania jest inna. Opiera się ona na przerwaniu reakcji fizykochemicznych zachodzących podczas spalania poprzez związanie wolnych rodników palenia prawdopodobnie powstałych z przekształcenia cząsteczek wody. Odbywa się to przy udziale aktywnych powierzchni nanoziaren aerozolu, który, w zależności od sposobu wyzwalania generatorów, może działać miejscowo lub objętościowo. Metoda ta jest bardzo efektywna. Mimo że nie zmniejsza poziomu tlenu w przestrzeni objętej pożarem, to w przeciwieństwie do proszków gaśniczych pozostawia śladową ilość zanieczyszczeń. Przede wszystkim nie wpływa negatywnie na środowisko poprzez zubożanie warstwy ozonowej i wzmożenie efektów cieplarnianych, gdyż w nowych aerozolach gaśniczych nie stosuje się halogenowych retardantów palenia. Metodologia: W pierwszej części artykułu dokonano przeglądu literatury z zakresu mechanizmów reakcji spalania, z uwzględnieniem udziału wody w tego typu procesach. W drugiej części artykułu skupiono się na przedstawieniu dyskusyjnego mechanizmu działania aerozolu gaśniczego, popierając te rozważania analizą wstępnych wyników badań dotyczących wykorzystania aerozolowych środków gaśniczych typu AGS 11/1 w celach ochrony eksponatów muzealnych, tj. figur drewnianych oraz starodruków. Wnioski: Przeprowadzona analiza literatury z zakresu mechanizmów reakcji spalania oraz działania aerozoli gaśniczych, a także wstępne wyniki badań pozwoliły na sformułowanie poniższych tez: – w początkowej fazie pożaru woda stanowi efektywny inhibitor palenia, jednak w późniejszych etapach aktywne rodniki powstałe na skutek jej rozkładu mogą podtrzymywać reakcję spalania płomieniowego, – aerozole gaśnicze nie wpływają na zmianę barwy figur drewnianych, ani nie zmieniają właściwości starodruków, przez co z powodzeniem mogą być stosowane w muzeach i budowlach zabytkowych.
Aim: The aim of this article is to discuss the physicochemical reactions which occur during a fire and to present the mechanism of action of fire inhibitors used in fire-extinguishing aerosols. The article also presents the results of research into the impact of fire-extinguishing aerosols on museum items. Introduction: Typically, there are two mechanisms used to extinguish fire, i.e. by lowering the temperature of the fire (e.g. by applying water or powders) or by cutting off the supply of oxygen or its significant reduction (with the exception of so-called chlorinated gases) by blanketing it with fire-extinguishing foams. However, in the case of fire-extinguishing aerosols, their action principle is different. It is based on the stopping of combustion reactions by binding active radicals which probably result from the conversion of water molecules through the active surface effect (whether local or by volume) of aerosol nanograins. This method is very efficacious. It does not reduce the level of oxygen in the air but, in contrast to the powders, leaves a trace amount of impurities. Most of all, however, it does not adversely affect the environment by ozone depletion or enhance the greenhouse effect due to there being no release of halogen-based fire retardants (in the latest type of aerosols). Methodology: The first part of the article includes a review of the literature on fire mechanisms, with the involvement of water in these processes. The second part focuses on the presentation of the mechanism of action of fire-extinguishing aerosols. This presentation is supported by an analysis of the preliminary research results concerning the use of aerosols type AGS 11/1 for the purposes of museum exhibits protection, i.e. wooden figures and old prints. Conclusions: The literature analysis in the field of combustion reactions mechanisms and action of fire-extinguishing aerosols, as well as the preliminary results of the research, allowed us to draw the following conclusions: – water is an effective inhibitor of combustion at the initial stage of the fire, but at later stages, active radicals generated by its decomposition can maintain the flame combustion reaction; – fire-extinguishing aerosols do not affect the colour of wooden figures, nor change the properties of old prints, which is why they can be successfully used in museums and historical buildings.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2017, 46, 2; 56-71
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Analysis of Thermal Properties of Selected Rock Materials by Thermovision Methods
Analiza właściwości cieplnych wybranych surowców naturalnych, na podstawie badań wykorzystujących metody termowizyjne
Autorzy:
Stempkowska, A.
Izak, P.
Mastalska-Popławska, J.
Staszewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/319117.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
ciepło właściwe minerałów
emisja ciepła
termiczne właściwości skał
moc cieplna
termowizja
minerals specific heat capacity
heat emission
rocks thermal properties
thermal power
thermovision
Opis:
Heat accumulation means denotes the of a material to collect and store inside a specific amount of thermal energy, which can be then returned for a period time from the material. There are many investigations devoted to finding a method to collect heat when there is an excess and to use it when there is a deficit. The parameter determining whether the returned heat long for a term will have an impact on the room temperature, is the time of emission of stored energy. For the specified amount of stored energy, the emission time cannot be too short (in such a case too much heat in the unit time is returned) or too long (in this case a too small amount of heat in the time unit is returned, for example insufficient for heating rooms). The main aim of this research is to investigate the behavior (during cooling) of natural rock materials. On the basis of research and performed calculations the evaluation of tested materials to serve as the heat accumulator was performed. This analysis would allow them to be applied for the production of components, including precast, working at elevated temperatures, in which the accumulation and transfer of heat is important (eg. housing furnaces and fireplaces).
Akumulacja ciepła oznacza zdolność materiału do gromadzenia i magazynowania w jego wnętrzu określonej porcji energii cieplnej, która następnie może być przez pewien okres czasu przez ten materiał oddawana. Szuka się więc sposobów gromadzenia ciepła wtedy, gdy jest jego nadmiar oraz wykorzystania, gdy występuje deficyt. Parametrem, decydującym o tym czy oddający ciepło materiał w sposób długotrwały będzie oddziaływał na temperaturę pomieszczenia, jest czas oddawania (emisji) zgromadzonej energii. Przy danej ilości zgromadzonej energii, czas jej emisji nie może być zbyt krótki (wtedy w jednostce czasu oddawane są zbyt duże ilości ciepła) ani zbyt długi (wtedy w jednostce czasu oddawane są zbyt małe ilości ciepła, niewystarczające np. do ogrzania pomieszczenia). W niniejszej pracy zrelacjonowano eksperyment polegający na badaniu zachowania się, podczas studzenia, naturalnych surowców mineralnych. Na tej podstawie badań oraz wykonanych obliczeń oceniono jego zdolność do akumulacji cieplnej. Pozwoliłoby to na stosowanie ich do wytwarzania elementów, w tym prefabrykatów, pracujących w podwyższonych temperaturach, gdzie jest istotna akumulacja i oddawanie ciepła (np. obudowy palenisk i komików).
Źródło:
Inżynieria Mineralna; 2018, R. 20, nr 2, 2; 337-344
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies