Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "engine chamber" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Study on kerosene atomization process under a high speed air stream
Autorzy:
Perkowski, W.
Irzycki, A.
Snopkiewicz, K.
Grudzień, Ł.
Kawalec, M.
Powiązania:
https://bibliotekanauki.pl/articles/247137.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
transport
aircraft engine
combustion chamber
fuel atomization
Opis:
For the needs of fuel-injection system development for the experimental detonation combustion chamber with a rotating detonation (PoiG - Project: "Turbine engine with detonation combustion chamber") a series of experiments with injection of kerosene under a high speed air stream was performed at the Institute of Aviation. The proper preparation of combustible mixture is very important for the initiation and sustenance of a rotating detonation. The task in case of kerosene-air mixture is far more difficult than for mixtures of hydrogen-air or kerosene-oxygen. A simple stream injector has been tested as a base system, and the kerosene was injected perpendicular to the air stream vector directly from the plane wall of the constant cross-section channel. The process of injection and atomization of kerosene was observed in the special transparent visualization chamber, enabling the spray observation of two mutually perpendicular directions. In subsequent experiments air pressure, air temperature and air flow velocity as well as and injection pressure of kerosene were varied. The tested process was photographed and, in case of chosen experiments, filmed using a high-speed digital camera. The surveys were aimed at identifying and assessing of following parameters of fuel atomization process: the range of the fuel stream and filling grade of research channel with aerosol, aerosol homogeneity and the size of forming it droplets, the possible presence of fuel streams flowing down the walls of channel. The resulting photos allowed for more comprehensive, but only a qualitative assess of the spraying process, while the filmed small regions of visualization chamber allowed the counting down and dimensioning of droplets. This paper presents a test facility and measuring techniques applied during the research activity and selected results of carried out tests.
Źródło:
Journal of KONES; 2011, 18, 4; 341-347
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of combustion chamber with a rotating detonation
Autorzy:
Łukasik, B.
Rowiński, A.
Irzycki, A.
Snopkiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/246882.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engine
turbine engines
combustion chamber
rotating detonation
Opis:
Institute of Aviation in Warsaw realizes the project concerning the application of the phenomenon of combustion with rotating detonation to the combustion chamber designed and destined for turbine engines. The test chamber is adapted for supplying both with liquid (aviation kerosene) and gaseous fuels in the form of mixture with compressed air. It is equipped with a probe for pressure and temperature measurements inside the flame tube as well as at its inlet and outlet sections. The measuring system allows measurement of physical phenomenon at low (1 kHz) and high (1 MHz) frequencies. Electric signals representing temperature and pressure sensor's measuring quantities, fuel and compressed air supply systems parameters and ignition-triggering values are collected using data acquisition system controlled by a computer. The prototype of the combustion chamber was examined at the especially designed test facility to determine at quasi-static operating conditions its following characteristics: speed of inside shock wave, exhaust gas thermodynamic parameters and ignition and going-out limits of gaseous fuel. In this article construction of test bench, schematic diagrams of measurement and power supply systems as well as the research process, the way of measurement data analysis recorded during the carried-out experiments and data validation manner are detailed described. The method of measurement data processing, the resulting graphs, and the conclusions of the study are presented as well.
Źródło:
Journal of KONES; 2012, 19, 2; 313-320
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Testing of initiation of rotating detonation process in hydrogen - air mixtures
Autorzy:
Balicki, W.
Irzycki, A.
Łukasik, B.
Snopkiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/247318.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engine
turbine engines
combustion chamber
rotating detonation
Opis:
The paper presents results of some research work done in the project, which aims to apply of an innovative combustion chamber to the turbine engine. Expected benefits of using of a new chamber in which classical deflagration type combustion process would be replaced with a detonation combustion type, arise from greater efficiency of FickettJacobs cycle, which corresponds to rotating detonation combustion, in comparison to "classical" Brayton cycle, characteristic of deflagration combustion. The presented task concerned fundamental research carried out on test bench designed and built at the Institute of Aviation in Warsaw. To initiate the detonation combustion in the fuel-air mixtures the ignition device of appropriately high energy is necessary. The released energy should be directed to the area where the mixture has proper constitution - preferably close to stoichiometric one. Four different ignition manners were examined in the course of research: electrical ignition system adapted from turbine engine (semiconductor spark plug), powder charge ignition (handgun cartridges), detonation primer ignition using pentryt, and high voltage discharge (plasma jet). The appearance of detonation type combustion was identified on the basis of combustion gas pressure run, measured using piezoelectric sensors at a frequency of 1 MHz.
Źródło:
Journal of KONES; 2012, 19, 2; 25-34
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The study of the continuously rotating detonation combustion chamber supplied with different types of fuel
Autorzy:
Łukasik, B.
Czyż, S.
Irzycki, A.
Rowiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/246684.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
rotating detonation
air/Jet-A detonation
detonation combustion chamber
internal combustion engine
Opis:
The paper summarizes research that was conducted last year as part of the project of “Turbine engine with detonation combustion chamber”. In this project, throughout 2012 and early 2013, tests were carried out on a test stand connected to the compressed air system. Research, of the rotating detonation phenomena, was carried out for a number of detonation chambers with different interior channel geometry. In addition, for each geometry configuration, tests were carried out for different levels of choking of the chamber outlet and hence for different pressures conditions inside the detonation chamber. This article presents the results of tests carried out for gaseous (hydrogen), hybrid (hydrogen + kerosene) and liquid (Jet-A) fuels, using different types of fuel injectors and for different fuel injection configuration settings (inside the chamber, or in front of the chamber). During these tests, parameters such as pressure behind the detonation wave (using piezoelectric sensors), the static pressure in front of and inside the detonation chamber and temperature: before, inside and at the outlet of the chamber, were measured. Research was performed for the various mass flow rates of air and fuel injected into the chamber that means for the different air-fuel equivalence ratios (Lambda). The main achievement of this study was to obtain a stable and reproducible rotating detonation of air and heated kerosene (Jet-A) mixture, thus the results presented in this paper presents mainly these tests as the most interesting to the reader
Źródło:
Journal of KONES; 2013, 20, 3; 259-266
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies