- Tytuł:
- Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum
- Autorzy:
-
Ononamadu, C.J.
Ibrahim, A. - Powiązania:
- https://bibliotekanauki.pl/articles/2096363.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
Gymnema sylvestre
Combretum micranthum
antidiabetic compounds
molecular docking
pharmacokinetics
drugs - Opis:
- Gymnema sylvestre and Combretum micranthum are well known for their ethno-medicinal uses in the northwest of Nigeria. In our recent study, we demonstrated the antidiabetic and antioxidant activities of the aqueous-methanol extracts of the two plants and identified some potentially active compounds. The present study aimed to conduct molecular docking and ADME/drug-likeness screening of the identified potentially active candidate compounds from aqueous-methanol extracts of G. sylvestre and C. micranthum leaves by using in silico techniques. Molecular docking of compounds on target proteins (α-amylase, α-glucosidase, and phosphorylated insulin receptor tyrosine kinase) was performed using Molsoft ICM-pro 3.8-3. The physicochemical, ADME, and drug-likeness parameters were computed using the SwissADME online program. The result corroborated the antidiabetic activities of the plants with significant binding interactions between compounds A (2,2-dimethyl-3-[4-(acetyloxy)phenyl]-4-ethyl2H-1-benzopyran-7-ol acetate), D (9,13-di-cis-retinoic acid), E (4-hydroxycinnamic acid), F ((-)-11-hydroxy-9,10-dihydrojasmonic acid), G (colnelenic acid), H (glyinflanin A), I (6,8a-seco-6,8a-deoxy-5-oxoavermectin “2a” aglycone), and J (3-deshydroxysappanol trimethyl ether) and at least one of the three target proteins. Four compounds, namely A (2,2-dimethyl-3-[4-(acetyloxy)phenyl]-4-ethyl-2H-1-benzopyran-7-ol acetate), E (4-hydroxycinnamic acid), H (glyinflanin A), and J (3-deshydroxysappanol trimethyl ether), yielded the best docking scores with respect to the target proteins, of which three (E (4-hydroxycinnamic acid), H (glyinflanin A), and J (3-deshydroxysappanol trimethyl ether)) were identified to have relatively optimal drug-likeness and medicinal chemistry characteristics. Thus, the present study concluded that these compounds may have contributed to the observed antidiabetic properties of these plants and can be investigated further as drugs or drug-like compound candidates.
- Źródło:
-
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2021, 102, 1; 85-99
0860-7796 - Pojawia się w:
- BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
- Dostawca treści:
- Biblioteka Nauki