Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "continuous spectrum" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On one condition of absolutely continuous spectrum for self-adjoint operators and its applications
Autorzy:
Ianovich, E.
Powiązania:
https://bibliotekanauki.pl/articles/254841.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
self-adjoint operators absolutely continuous spectrum
equi-absolute continuity
spectral density
Jacobi matrices
Opis:
In this work the method of analyzing of the absolutely continuous spectrum for self-adjoint operators is considered. For the analysis it is used an approximation of a self-adjoint operator A by a sequence of operators An with absolutely continuous spectrum on a given interval [a, b] which converges to A in a strong sense on a dense set. The notion of equi-absolute continuity is also used. It was found a sufficient condition of absolute continuity of the operator A spectrum on the finite interval [a, b] and the condition for that the corresponding spectral density belongs to the class Lp[a,b] (p ≥ 1). The application of this method to Jacobi matrices is considered. As one of the results we obtain the following assertion: Under some mild assumptions, suppose that there exist a constant C > 0 and a positive function g(x) ∈ Lp[a, b] (p ≥ 1).such that for all n sufficiently large and almost all [formula] the estimate [formula] holds, where Pn(x) are 1st type polynomials associated with Jacobi matrix (in the sense of Akhiezer) and bn is a second diagonal sequence of Jacobi matrix. Then the spectrum of Jacobi matrix operator is purely absolutely continuous on [a, b] and for the corresponding spectral density ƒ (x) we have ƒ (x) ∈ Lp[a,b].
Źródło:
Opuscula Mathematica; 2018, 38, 5; 699-718
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies