Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hu, X.F." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks
Autorzy:
Jeans, C. V.
Turchyn, A. V.
Hu, X.-F.
Powiązania:
https://bibliotekanauki.pl/articles/139390.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
diagenesis
iron sulfide nodules
δ34S values
bacterial control
coloured chalks
volcanogenic events
NW Europe
kreda
diageneza
siarczan żelaza
wartości δ34S
kontrola bakteryjna
Europa
Opis:
The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from -48.6‰ at their core to -32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from -34.7‰ to +40.0‰. In the lower part of the section δ34S vary from -34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from -32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.
Źródło:
Acta Geologica Polonica; 2016, 66, 2; 227-256
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regional hardening of Upper Cretaceous Chalk in eastern England, UK: trace element and stable isotope patterns in the Upper Cenomanian and Turonian Chalk and their significance
Autorzy:
Jeans, C. V.
Long, D.
Hu, X.-F.
Mortimore, R. N.
Powiązania:
https://bibliotekanauki.pl/articles/139436.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chalk hardening
trace elements
stable isotopes
cement modelling
reservoir diagenesis
history
kreda
hartowanie
pierwiastki śladowe
izotopy trwałe
cement
historia
Opis:
The regional hardening of the Late Cenomanian to Early Turonian Chalk of the Northern Province of eastern England has been investigated by examining the pattern of trace elements and stable carbon and oxygen isotopes in the bulk calcite of two extensive and stratigraphically adjacent units each 4 to 5 m thick of hard chalk in Lincolnshire and Yorkshire. These units are separated by a sequence, 0.3–1.3 m thick, of variegated marls and clayey marls. Modelling of the geochemistry of the hard chalk by comparison with the Standard Louth Chalk, combined with associated petrographic and geological evidence, indicates that (1) the hardening is due to the precipitation of a calcite cement, and (2) the regional and stratigraphical patterns of geochemical variation in the cement are largely independent of each other and have been maintained by the impermeable nature of the thin sequence of the clay-rich marls that separate them. Two phases of calcite cementation are recognised. The first phase was microbially influenced and did not lithify the chalk. It took place predominantly in oxic and suboxic conditions under considerable overpressure in which the Chalk pore fluids circulated within the units, driven by variations in compaction, temperature, pore fluid pressure and local tectonics. There is evidence in central and southern Lincolnshire of the loss of Sr and Mg-enriched pore fluids to the south during an early part of this phase. The second phase of calcite precipitation was associated with the loss of overpressure in probably Late Cretaceous and in Cenozoic times as the result of fault movement in the basement penetrating the overlying Chalk and damaging the seal between the two chalk units. This greatly enhanced grain pressures, resulting in grain welding and pressure dissolution, causing lithification with the development of stylolites, marl seams, and brittle fractures. Associated with this loss of overpressure was the penetration of the chalk units by allochthonous fluids, rich in sulphate and hydrocarbons, derived probably from the North Sea Basin. Microbial sulphate-reduction under anoxic conditions within these allochthonous fluids has been responsible for dissolving the fine-grained iron and manganese oxides within the chalk, locally enriching the Fe and Mn content of the calcite cement. The possibility is discussed that the pattern of cementation preserved in these regionally hard chalks of Late Cenomanian and Early Turonian age may be different from that preserved in the younger (late Turonian to Campanian) more basinal chalks of eastern England.
Źródło:
Acta Geologica Polonica; 2014, 64, 4; 419-455
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies